概要
本文聚焦如何使用spring-AI来开发大模型应用一些进阶技能,包含一套可落地的技术设计模式,读完你将会学习到:
- 如何使用Spring-AI 开发大模型对话应用
- 如何综合设计一套适用Spring-ai的代码结构,为应用提供更好的扩展能力
本文假设读者已经熟悉spring-ai的基本功能以及大模型开发的入门知识,如果你还不熟悉这些基础知识,可以找我仔细学习。
开发目标
我们会简单的模拟豆包的业务模型,开发一个用户与大模型对话的应用程序,我们会从领域模型开始设计,一直到应用模型和应用实现。
由于篇幅有限,我们不展开细节完成每一个功能,这里只介绍核心领域建模和应用的开发模式。
我们将会聚焦一次对话的处理流程,如下图所示:

- 本地工具集也就是function calling 可以随时添加,删除,并且根据对话上下文动态抉择
- 向量数据库搜索可以根据对话上下文选择是否使用,甚至提供多个选择
# 设计领域模型
- Agent 表示一个大模型agent,包括大模型的命名,SystemPrompt,所属用户等
- Conversation 表示一次对话
- User 表示正在使用系统的用户
- ChatMessage表示一个对话消息,一个对话消息由多个内容组成,因为一次对话可以发送包括文本和媒体多条具体内容。
至此,我们简单模拟了豆包的领域模型

设计应用模型
首先设计一个 ChatContext类,用来表示全部对话的上下文核心,这里我们分析如下:
-
对话上下文包含 when,who,what,where,how 五种元素
- When - 用户发送消息的时间
- Who - 发送消息的用户
- What - 用户发送发的消息
- Where - 用户处于哪一个对话
- How - 本次对话有哪些配置选项
-
对话上下文可以配置标记属性,以便在不同功能之间传递消息,这点类似Servlet技术中方的ServletRequest#getAttribute
-
对话上下文是只读的,不允许修改
import java.util.HashMap;
import java.util.Map;
import com.github.aurora.ultra.chat.domain.Conversation;
import com.github.aurora.ultra.chat.domain.User;
import lombok.Builder;
import lombok.Getter;
import org.springframework.ai.chat.messages.UserMessage;@Getter
@Builder
public class ChatContext {
// when who what where how
// -------------------------------------------------------------
// now user userMessage conversation chatOptionprivate final Map<String, Object> attributes = new HashMap<>(); private final User user; private final UserMessage userMessage; private final ChatOption chatOption; private final Conversation conversation; public void setAttribute(String key, Object value) { attributes.put(key, value); } public Object getAttribute(String key) { return attributes.get(key); } @SuppressWarnings("unchecked") public <T> T getAttribute(String key, Class<T> ignored) { return (T) attributes.get(key); }
}
至此,我们有了可用的对话上下文,可以围绕这个上下文开发对话逻辑了。
设计应用逻辑
首先我们来设计应用的扩展点,其实本质上应该是先设计应用逻辑,再进行重构设计扩展点,但是这里为了行文方便,直接展示下扩展点,免去重构的过程,请读者注意,真实开发的时候不可能一开始就想得到哪些地方需要扩展,一定是先做出基础逻辑,再重构出扩展点点。
我们先来分析一下可扩展的点:
- 对话模型可以切换,系统将会根据上下文推断出本次要使用的模型。
- 本地方法可以随时增加删除,系统会很久本次上下文推断出需要调用的本地工具。
- 其他spring-ai框架的的Advisor也可能根据一次对话的上下文被推断出。
由此可见对话上下文是整个应用的重点,所有的功能是否被使用都围绕着这个上下文,并且这些功能在运行的时候会根据上下文动态提供出来,不难看出,这是一个策略模式,于是我们设计如下接口:
public interface ChatAdvisorSupplier {
boolean support(ChatContext context);
Advisor getAdvisor(ChatContext context);
}
public interface ChatClientSupplier {
boolean support(ChatContext context);
ChatClient getChatClient(ChatContext context);
}
public interface ChatTool {
String getName();
String getDescription();
}
public interface ChatToolSupplier {
boolean support(ChatContext context);
ChatTool getTool(ChatContext context);
}
- ChatAdvisorSupplier 用来为本次对话提供spring-ai的Advisor
- ChatClientSupplier 会根据本地对话提供可用的模型client
- ChatTool 用来表示一个包含本地放的的类,提供了name和desc两个属性,用来让大模型帮我们判断哪些工具在本次对话需要被使用到
- ChatToolSupplier则会根据当前对话给出哪些本地工具会被使用到。
下面我们将这些组件串联起来,这样一来,我们的核心交互流程不变,而具体交互流程在策略器中可随时动态增减。

实现应用逻辑
我们来看一下ChatService是如何被实现的。
@Slf4j
@Service
@RequiredArgsConstructor
public class ChatService {
public static final int CHAT_RESPONSE_BUFFER_SIZE = 24;
public static final String CHAT_TOOLS_CHOSEN_MODEL = "gpt-3.5-turbo";
private final ChatManager chatManager;
private final List<ChatToolSupplier> chatToolSuppliers;
private final List<ChatClientSupplier> chatClientSuppliers;
private final List<ChatAdvisorSupplier> chatAdvisorSuppliers;
public ChatReply chat(ChatCommand command) throws ChatException {
try {
var user = User.mock();
var chatOption = command.getOption();
var conversation = getConversation(command.getConversationId());
var userMessage = createUserMessage(command);
var context = ChatContext.builder()
.user(user)
.userMessage(userMessage)
.chatOption(chatOption)
.conversation(conversation)
.build();
return this.chat(context);
} catch (Exception e) {
throw ChatException.of("Something wrong when processing the chat command", e);
}
}
private ChatReply chat(ChatContext context) throws ChatException {
var tools = getTools(context);
var advisors = getAdvisors(context);
var chatClient = getChatClient(context);
var conversation = context.getConversation();
var userMessage = context.getUserMessage();
var contents = chatClient
.prompt()
.advisors(advisors)
.messages(conversation.createPromptMessages())
.messages(userMessage)
.toolCallbacks(ToolCallbacks.from(tools.toArray()))
.toolContext(context.getAttributes())
.stream()
.content()
.buffer(CHAT_RESPONSE_BUFFER_SIZE)
.map(strings -> String.join("", strings));
return ChatReply.builder()
.contents(contents)
.build();
}
private UserMessage createUserMessage(ChatCommand command) {
return new UserMessage(command.getContent());
}
private Conversation getConversation(String conversationId) {
return chatManager.getOrCreateConversation(conversationId);
}
private List<Advisor> getAdvisors(ChatContext context) {
return chatAdvisorSuppliers
.stream()
.filter(chatAdvisorSupplier -> chatAdvisorSupplier.support(context))
.map(chatAdvisorSupplier -> chatAdvisorSupplier.getAdvisor(context))
.toList();
}
private ChatClient getChatClient(ChatContext context) throws ChatException {
return chatClientSuppliers
.stream()
.filter(chatAdvisorSupplier -> chatAdvisorSupplier.support(context))
.map(chatAdvisorSupplier -> chatAdvisorSupplier.getChatClient(context))
.findFirst()
.orElseThrow(() -> ChatException.of("unknown how to create the chat client, maybe you need to add a chat client supplier?"));
}
private List<ChatTool> getTools(ChatContext context) throws ChatException {
var tools = chatToolSuppliers
.stream()
.filter(supplier -> supplier.support(context))
.map(supplier -> supplier.getTool(context))
.toList();
if (tools.isEmpty()) {
return tools;
}
var toolDescription = tools.stream()
.map(chatTool -> String.format("- %s: %s", chatTool.getName(), chatTool.getDescription()))
.collect(Collectors.joining("\n"));
var systemPrompt = "You will determine what tools to use based on the user's problem." +
"Please directly reply the tool names with delimiters ','. " +
"Reply example: tool1,tool2." +
"The tools are: \n" +
toolDescription;
var toolsDecision = getChatClient(context)
.prompt()
.options(ChatOptions.builder()
.model(CHAT_TOOLS_CHOSEN_MODEL)
.build())
.system(systemPrompt)
.messages(context.getUserMessage())
.call()
.content();
if (StringUtils.isBlank(toolsDecision)) {
return new ArrayList<>();
}
var chosen = Arrays.asList(toolsDecision.split(","));
log.info("tools chosen: {}", chosen);
tools = tools.stream()
.filter(chatTool -> chosen.contains(chatTool.getName()))
.toList();
return tools;
}
}
- 首先ChatService注入了所有的ChatToolSupplier,ChatClientSupplier,ChatAdvisorSupplier接口实例;
- 当处理ChatCommand的时候,组装出ChatContext;
- 然后调用一系列的get方法读取相关的策略
- 最后调用大模型client与之交互
其中getTools方法相对比较复杂,它先便利了所有的本地工具,然后将用户对话和本地工具描述一起交给了大模型,大模型告诉本地应用那一套functions更适合处理这个问题,然后菜返回本地工具集。之所以这么做,是因为(例如)openai官网明确说明,建议一次对话functions不要太多,最好不要超过20个,因为更多的functions意味着更多的token,也意味着更多的处理时间,而且也没有必要。
为应用增加RAG功能
有了ChatAdvisorSupplier这个接口,我们可以轻易的为应用逻辑增加RAG的功能。
@Slf4j
@Component
@RequiredArgsConstructor
public class InternalSearchAdvisorSupplier implements ChatAdvisorSupplier {
private final static int DEFAULT_TOP_K = 3;
private final VectorStore vectorStore;
private final static String USER_TEXT_ADVISE = """
上下文信息如下,用 --------------------- 包围
---------------------
{question_answer_context}
---------------------
根据上下文和提供的历史信息(而非先验知识)回复用户问题。如果答案不在上下文中,请告知用户你无法回答该问题。
""";
@Override
public boolean support(ChatContext context) {
return context.getChatOption().isEnableInternalSearch();
}
@Override
public Advisor getAdvisor(ChatContext context) {
return QuestionAnswerAdvisor.builder(vectorStore)
.searchRequest(
SearchRequest.builder()
.topK(NumberUtils.max(context.getChatOption().getRetrieveTopK(), DEFAULT_TOP_K))
.build()
)
.userTextAdvise(USER_TEXT_ADVISE)
.build();
}
}
这里我们规定,只要chatOption里面开启了InternalSearch开关,则应用RAG功能。你只要看一下下面的ChatOption类的设计,就瞬间明白了这个设计。
@Getter
@Builder
@RequiredArgsConstructor
public class ChatOption implements Serializable {
private final boolean enableInternalSearch;
private final boolean enableExternalSearch;
private final boolean enableExampleTools;
private final boolean enableMemory;
private final boolean enableDebug;
private final int retrieveTopK;
private final String model;
}
为应用增加一组Function Calling
我们写一个示例的Tool,提供function calling的功能
@Slf4j
@Component
public class ExampleTool implements ChatTool {
@Override
public String getName() {
return "SampleTool";
}
@Override
public String getDescription() {
return """
contains methods: forecast,
get date time,
operate local file,
""";
}
@Tool(description = "Get the current date and time in the user's timezone")
public String getCurrentDateTime() {
return LocalDateTime.now().atZone(LocaleContextHolder.getTimeZone().toZoneId()).toString();
}
@Tool(description = "get the forecast weather of the specified city and date")
public String getForecast(@ToolParam(description = "日期") LocalDate date,
@ToolParam(description = "城市") String city) {
return """
- 当前温度:12°C \n
- 天气状况:雾霾 \n
- 体感温度:12°C \n
- 今天天气:大部分地区多云,最低气温9°C \n
- 空气质量:轻度污染 (51-100),主要污染物 PM2.5 75 μg/m³ \n
- 风速:轻风 (2 - 5 公里/小时),西南风 1级 \n
- 湿度:78% \n
- 能见度:能见度差 (1 - 2 公里),2 公里 \n
- 气压:1018 hPa \n
- 露点:8°C \n
""";
}
}
再为这个tool写一个supplier
@Slf4j
@Component
@RequiredArgsConstructor
public class ExampleToolSupplier implements ChatToolSupplier {
private final ExampleTool exampleTool;
@Override
public boolean support(ChatContext context) {
return context.getChatOption().isEnableExampleTools();
}
@Override
public ChatTool getTool(ChatContext context) {
return exampleTool;
}
}
于是乎,你在没有修改主逻辑的情况下为应用增加了两个功能,这看上去真的很棒!高内聚,低耦合,并且对扩展开放,对修改封闭!
现在,你可以像下面这样,提供更多的扩展能力

# Maven
首先配置maven配置,导入spring-ai的核心包,这里我们目前只用到了openai和rag向量数据库,暂时导入这两个包即可。
<!-- spring AI -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-openai</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-advisors-vector-store</artifactId>
</dependency>
代码整体结构
