python310 安装 tensorflow-gpu2.10

python310 安装 tensorflow-gpu2.10

工具 miniconda

环境准备

  1. 升级依赖库

    bash 复制代码
    conda update --all
  2. 创建目录

    bash 复制代码
    mkdir gpu-tf
  3. 进入目录

    bash 复制代码
    cd gpu-tf
  4. 创建虚拟环境

    bash 复制代码
    conda create -p tf210-310 python==3.10.16
  5. 激活虚拟环境

    bash 复制代码
    conda activate D:\gpu-tf\tf210-310
  6. 重新安装pip

    bash 复制代码
    python -m pip uninstall pip
    python -m ensurepip --upgrade
  7. 升级 setuptools wheel

    bash 复制代码
    python -m pip install --upgrade pip setuptools wheel

安装cudacudnn

bash 复制代码
conda install cudatoolkit==11.3.1 cudnn==8.2.1

安装 numpy

解决版本兼容

bash 复制代码
pip install numpy==1.26.4

安装 tensorflow-gpu

bash 复制代码
pip install tensorflow-gpu==2.10.1

测试

  1. 控制台输入 python 进入 python 环境后输入以下内容:

    python 复制代码
    import tensorflow as tf
    
    # 打印TensorFlow版本信息
    print("TensorFlow version:", tf.__version__)
    
    # 检查GPU是否可用
    print("GPU is available:", end='\t' )
    print(tf.config.list_physical_devices('GPU'))
  2. 编写 python 文件,代码如下:

    python 复制代码
    import tensorflow as tf
    
    # 打印TensorFlow版本信息
    print("TensorFlow version:", tf.__version__)
    
    # 检查GPU是否可用
    if tf.config.list_physical_devices('GPU'):
        print("GPU is available")
    else:
        print("GPU is not available")
    
    # 使用tf.function装饰器自动将操作分配到GPU(如果可用)
    @tf.function
    def test_gpu():
        a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
        c = tf.matmul(a, b)
        return c
    
    # 调用函数并打印结果
    result = test_gpu()
    print(result)
  3. 运行刚刚编写的 python 文件,输入内容如下:

相关推荐
逻极5 分钟前
Kiro 安全最佳实践:守护代理式 IDE 的 “防火墙”
ide·人工智能·安全·ai
Danceful_YJ5 分钟前
23.目标检测基础
人工智能·目标检测·计算机视觉
不要喷香水5 分钟前
26.java openCV4.x 入门-Imgproc之图像尺寸调整与区域提取
java·人工智能·opencv·计算机视觉
央链知播13 分钟前
何超谈“AI元宇宙将引领场景革命 “十五五”勾勒科技新蓝图”
人工智能·科技
B站_计算机毕业设计之家14 分钟前
深度学习:python人脸表情识别系统 情绪识别系统 深度学习 神经网络CNN算法 ✅
python·深度学习·神经网络·算法·yolo·机器学习·cnn
CV视觉23 分钟前
AI 实战篇:用 LangGraph 串联 RAG+MCP Server,打造能直接操控 Jira 的智能体
人工智能·深度学习·机器学习·自然语言处理·langchain·prompt·jira
骄傲的心别枯萎25 分钟前
RV1126 NO.42:OPENCV形态学基础之一:膨胀
人工智能·opencv·计算机视觉
亚马逊云开发者27 分钟前
Agentic AI基础设施实践经验系列(五):Agent应用系统中的身份认证与授权管理
人工智能
爱编程的鱼1 小时前
ESLint 是什么?
开发语言·网络·人工智能·网络协议
星光一影1 小时前
Spring Boot 3+Spring AI 打造旅游智能体!集成阿里云通义千问,多轮对话 + 搜索 + PDF 生成撑全流程
人工智能·spring boot·spring