python310 安装 tensorflow-gpu2.10

python310 安装 tensorflow-gpu2.10

工具 miniconda

环境准备

  1. 升级依赖库

    bash 复制代码
    conda update --all
  2. 创建目录

    bash 复制代码
    mkdir gpu-tf
  3. 进入目录

    bash 复制代码
    cd gpu-tf
  4. 创建虚拟环境

    bash 复制代码
    conda create -p tf210-310 python==3.10.16
  5. 激活虚拟环境

    bash 复制代码
    conda activate D:\gpu-tf\tf210-310
  6. 重新安装pip

    bash 复制代码
    python -m pip uninstall pip
    python -m ensurepip --upgrade
  7. 升级 setuptools wheel

    bash 复制代码
    python -m pip install --upgrade pip setuptools wheel

安装cudacudnn

bash 复制代码
conda install cudatoolkit==11.3.1 cudnn==8.2.1

安装 numpy

解决版本兼容

bash 复制代码
pip install numpy==1.26.4

安装 tensorflow-gpu

bash 复制代码
pip install tensorflow-gpu==2.10.1

测试

  1. 控制台输入 python 进入 python 环境后输入以下内容:

    python 复制代码
    import tensorflow as tf
    
    # 打印TensorFlow版本信息
    print("TensorFlow version:", tf.__version__)
    
    # 检查GPU是否可用
    print("GPU is available:", end='\t' )
    print(tf.config.list_physical_devices('GPU'))
  2. 编写 python 文件,代码如下:

    python 复制代码
    import tensorflow as tf
    
    # 打印TensorFlow版本信息
    print("TensorFlow version:", tf.__version__)
    
    # 检查GPU是否可用
    if tf.config.list_physical_devices('GPU'):
        print("GPU is available")
    else:
        print("GPU is not available")
    
    # 使用tf.function装饰器自动将操作分配到GPU(如果可用)
    @tf.function
    def test_gpu():
        a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
        c = tf.matmul(a, b)
        return c
    
    # 调用函数并打印结果
    result = test_gpu()
    print(result)
  3. 运行刚刚编写的 python 文件,输入内容如下:

相关推荐
康谋自动驾驶8 分钟前
高校自动驾驶研究新基建:“实测 - 仿真” 一体化数据采集与验证平台
人工智能·机器学习·自动驾驶·科研·数据采集·时间同步·仿真平台
Ftsom8 分钟前
【6】kilo 上下文管理与压缩机制
人工智能·agent·ai编程·kilo
diediedei12 分钟前
持续集成/持续部署(CI/CD) for Python
jvm·数据库·python
shangjian00712 分钟前
AI-大语言模型LLM-Transformer架构1-整体介绍
人工智能·语言模型·transformer
weixin_4454023015 分钟前
Python游戏中的碰撞检测实现
jvm·数据库·python
机 _ 长18 分钟前
YOLO26 蒸馏改进全攻略:从理论到实战 (Response + Feature + Relation)
人工智能·深度学习·yolo·目标检测·计算机视觉
shangjian00720 分钟前
AI-大语言模型LLM-Transformer架构2-自注意力
人工智能·语言模型·transformer
2501_9415079422 分钟前
基于YOLOv26的文档手写文本与签名识别系统·从模型改进到完整实现
人工智能·yolo·目标跟踪
_ziva_25 分钟前
Layer Normalization 全解析:LLMs 训练稳定的核心密码
人工智能·机器学习·自然语言处理
莫潇羽25 分钟前
Midjourney AI图像创作完全指南:从零基础到精通提示词设计与风格探索
人工智能·midjourney