python310 安装 tensorflow-gpu2.10

python310 安装 tensorflow-gpu2.10

工具 miniconda

环境准备

  1. 升级依赖库

    bash 复制代码
    conda update --all
  2. 创建目录

    bash 复制代码
    mkdir gpu-tf
  3. 进入目录

    bash 复制代码
    cd gpu-tf
  4. 创建虚拟环境

    bash 复制代码
    conda create -p tf210-310 python==3.10.16
  5. 激活虚拟环境

    bash 复制代码
    conda activate D:\gpu-tf\tf210-310
  6. 重新安装pip

    bash 复制代码
    python -m pip uninstall pip
    python -m ensurepip --upgrade
  7. 升级 setuptools wheel

    bash 复制代码
    python -m pip install --upgrade pip setuptools wheel

安装cudacudnn

bash 复制代码
conda install cudatoolkit==11.3.1 cudnn==8.2.1

安装 numpy

解决版本兼容

bash 复制代码
pip install numpy==1.26.4

安装 tensorflow-gpu

bash 复制代码
pip install tensorflow-gpu==2.10.1

测试

  1. 控制台输入 python 进入 python 环境后输入以下内容:

    python 复制代码
    import tensorflow as tf
    
    # 打印TensorFlow版本信息
    print("TensorFlow version:", tf.__version__)
    
    # 检查GPU是否可用
    print("GPU is available:", end='\t' )
    print(tf.config.list_physical_devices('GPU'))
  2. 编写 python 文件,代码如下:

    python 复制代码
    import tensorflow as tf
    
    # 打印TensorFlow版本信息
    print("TensorFlow version:", tf.__version__)
    
    # 检查GPU是否可用
    if tf.config.list_physical_devices('GPU'):
        print("GPU is available")
    else:
        print("GPU is not available")
    
    # 使用tf.function装饰器自动将操作分配到GPU(如果可用)
    @tf.function
    def test_gpu():
        a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
        c = tf.matmul(a, b)
        return c
    
    # 调用函数并打印结果
    result = test_gpu()
    print(result)
  3. 运行刚刚编写的 python 文件,输入内容如下:

相关推荐
美狐美颜sdk2 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程2 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li2 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝2 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion4 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周4 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
思则变5 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
叶子爱分享5 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜5 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿5 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程