Pandas 的透视与逆透视

目录

[1. 透视](#1. 透视)

[1.1 pivot](#1.1 pivot)

[1.2 pivot_table](#1.2 pivot_table)

2.逆透视


1. 透视

透视是长表变宽表。

pivot() 和 pivot_table()两个函数都可以做到,后者可以聚合前者不行。

特性 df.pivot() df.pivot_table()
重复值处理 要求索引和列的组合唯一,否则报错 ValueError 允许重复值,通过聚合函数(如均值、求和等)处理
聚合功能 不支持聚合,仅用于数据重组 支持聚合(默认 aggfunc='mean'
多值列处理 无法处理多值列(需唯一索引-列组合) 自动聚合多值(如求和、均值等)
灵活性 简单场景适用(无重复值) 复杂场景适用(支持重复值和自定义聚合)

示例数据:

python 复制代码
import pandas as pd

data = {
    'Year': [2020, 2020, 2021, 2021, 2020, 2020],
    'Product': ['A', 'A', 'A', 'B', 'B', 'B'],
    'Region': ['East', 'West', 'East', 'West', 'East', 'West'],
    'Sales': [100, 150, 200, 50, 120, 90]
}
df = pd.DataFrame(data)

原表:

1.1 pivot

参数 说明 默认值 示例
index 作为行索引的列名(可以是单个列名或列表) None index='Region'
columns 作为列名的列名(可以是单个列名或列表) None columns='Year'
values 作为填充值的列名(可以是单个列名或列表,选填) None values='Sales'

指定index是转换后的索引,不能重复,如果单独是Year 则会报错:

ValueError: Index contains duplicate entries, cannot reshape

重置一下行索引:

1.2 pivot_table

参数 说明 默认值 示例
index 作为行索引的列名(可以是单个列名或列表) None index='Region'
columns 作为列名的列名(可以是单个列名或列表) None columns='Year'
values 作为填充值的列名(可以是单个列名或列表,选填) None values='Sales'
aggfunc 聚合函数(如 'sum', 'mean', 'count' 或自定义函数) 'mean' aggfunc='sum'
fill_value 填充缺失值的值 None fill_value=0
margins 是否添加总计行/列(True/False False margins=True
margins_name 总计行/列的标签名 'All' margins_name='Total'
dropna 是否删除全为 NaN 的列(True/False True dropna=False

index指定的索引值可以重复,相当于根据该值进行分组,自动进行聚合(默认聚合函数median)例子以地区为索引,以Year为列,求每年的Sales的均值

  1. 自定义聚合函数

同样重置索引:

2.逆透视

melt()函数,指定宽表变长表

参数 说明 默认值 示例
id_vars 保留的标识列(不参与转换,可以是单个列名或列表) None id_vars=['Year', 'Product']
value_vars 需要转换的列(可以是单个列名或列表,默认转换所有非 id_vars 列) None value_vars=['Sales']
var_name 存储原列名的列名(新生成的"变量列") 'variable' var_name='Category'
value_name 存储原列值的列名(新生成的"值列") 'value' value_name='Revenue'
col_level 多层列索引时指定要转换的层级(用于 MultiIndex 列) None col_level=0

以上面透视的结果为例:

逆透视:

相关推荐
君名余曰正则15 小时前
机器学习实操项目03——Scikit-learn介绍及简单分类案例
机器学习·分类·scikit-learn
华科云商xiao徐15 小时前
如何在C语言环境中借助Linux库构建高效网络爬虫
爬虫·数据挖掘·数据分析
xchenhao15 小时前
SciKit-Learn 全面分析 digits 手写数据集
python·机器学习·分类·数据集·scikit-learn·svm·手写
赵谨言15 小时前
基于数据挖掘的单纯冠心病与冠心病合并糖尿病的证治规律对比研究
经验分享·数据挖掘·毕业设计
赵谨言15 小时前
基于大数据挖掘的药品不良反应知识整合与利用研究
经验分享·数据挖掘·毕业设计
Godspeed Zhao15 小时前
自动驾驶中的传感器技术40——Radar(1)
人工智能·机器学习·自动驾驶
胡耀超15 小时前
7、Matplotlib、Seaborn、Plotly数据可视化与探索性分析(探索性数据分析(EDA)方法论)
python·信息可视化·plotly·数据挖掘·数据分析·matplotlib·seaborn
easy202016 小时前
从机器学习的角度实现 excel 中趋势线:揭秘梯度下降过程
笔记·机器学习·线性回归
Twilight-pending17 小时前
计算机系统性能、架构设计、调度策略论文分类体系参考
人工智能·云原生·分类·数据挖掘
Godspeed Zhao18 小时前
自动驾驶中的传感器技术42——Radar(3)
人工智能·机器学习·自动驾驶