聊聊Spring AI Alibaba的SentenceSplitter

本文主要研究一下Spring AI Alibaba的SentenceSplitter

SentenceSplitter

spring-ai-alibaba-core/src/main/java/com/alibaba/cloud/ai/transformer/splitter/SentenceSplitter.java

复制代码
public class SentenceSplitter extends TextSplitter {

	private final EncodingRegistry registry = Encodings.newLazyEncodingRegistry();

	private final Encoding encoding = registry.getEncoding(EncodingType.CL100K_BASE);

	private static final int DEFAULT_CHUNK_SIZE = 1024;

	private final SentenceModel sentenceModel;

	private final int chunkSize;

	public SentenceSplitter() {
		this(DEFAULT_CHUNK_SIZE);
	}

	public SentenceSplitter(int chunkSize) {
		this.chunkSize = chunkSize;
		this.sentenceModel = getSentenceModel();
	}

	@Override
	protected List<String> splitText(String text) {
		SentenceDetectorME sentenceDetector = new SentenceDetectorME(sentenceModel);
		String[] texts = sentenceDetector.sentDetect(text);
		if (texts == null || texts.length == 0) {
			return Collections.emptyList();
		}

		List<String> chunks = new ArrayList<>();
		StringBuilder chunk = new StringBuilder();
		for (int i = 0; i < texts.length; i++) {
			int currentChunkSize = getEncodedTokens(chunk.toString()).size();
			int textTokenSize = getEncodedTokens(texts[i]).size();
			if (currentChunkSize + textTokenSize > chunkSize) {
				chunks.add(chunk.toString());
				chunk = new StringBuilder(texts[i]);
			}
			else {
				chunk.append(texts[i]);
			}

			if (i == texts.length - 1) {
				chunks.add(chunk.toString());
			}
		}

		return chunks;
	}

	private SentenceModel getSentenceModel() {
		try (InputStream is = getClass().getResourceAsStream("/opennlp/opennlp-en-ud-ewt-sentence-1.2-2.5.0.bin")) {
			if (is == null) {
				throw new RuntimeException("sentence model is invalid");
			}

			return new SentenceModel(is);
		}
		catch (IOException e) {
			throw new RuntimeException(e);
		}
	}

	private List<Integer> getEncodedTokens(String text) {
		Assert.notNull(text, "Text must not be null");
		return this.encoding.encode(text).boxed();
	}

}

SentenceSplitter继承了TextSplitter,其构造器会通过getSentenceModel()来加载/opennlp/opennlp-en-ud-ewt-sentence-1.2-2.5.0.bin这个SentenceModel;splitText方法创建SentenceDetectorME,使用其sentDetect来拆分句子,再根据chunkSize进一步合并或拆分

示例

spring-ai-alibaba-core/src/test/java/com/alibaba/cloud/ai/transformer/splitter/SentenceSplitterTests.java

复制代码
class SentenceSplitterTests {

	private SentenceSplitter splitter;

	private static final int CUSTOM_CHUNK_SIZE = 100;

	@BeforeEach
	void setUp() {
		// Initialize with default chunk size
		splitter = new SentenceSplitter();
	}

	/**
	 * Test default constructor. Verifies that splitter can be created with default chunk
	 * size.
	 */
	@Test
	void testDefaultConstructor() {
		SentenceSplitter defaultSplitter = new SentenceSplitter();
		assertThat(defaultSplitter).isNotNull();
	}

	/**
	 * Test constructor with custom chunk size. Verifies that splitter can be created with
	 * specified chunk size.
	 */
	@Test
	void testCustomChunkSizeConstructor() {
		SentenceSplitter customSplitter = new SentenceSplitter(CUSTOM_CHUNK_SIZE);
		assertThat(customSplitter).isNotNull();
	}

	/**
	 * Test splitting simple sentences. Verifies basic sentence splitting functionality.
	 */
	@Test
	void testSplitSimpleSentences() {
		String text = "This is a test. This is another test. And this is a third test.";
		Document doc = new Document(text);
		List<Document> documents = splitter.apply(Collections.singletonList(doc));

		assertThat(documents).isNotNull();
		assertThat(documents).hasSize(1);
		assertThat(documents.get(0).getText()).contains("This is a test", "This is another test",
				"And this is a third test");
	}

	/**
	 * Test splitting empty text. Verifies handling of empty input.
	 */
	@Test
	void testSplitEmptyText() {
		Document doc = new Document("");
		List<Document> documents = splitter.apply(Collections.singletonList(doc));
		assertThat(documents).isEmpty();
	}

	/**
	 * Test splitting text with special characters. Verifies handling of text with various
	 * punctuation and special characters.
	 */
	@Test
	void testSplitTextWithSpecialCharacters() {
		String text = "Hello, world! How are you? I'm doing great... This is a test; with various punctuation.";
		Document doc = new Document(text);
		List<Document> documents = splitter.apply(Collections.singletonList(doc));

		assertThat(documents).isNotNull();
		assertThat(documents).hasSize(1);
		assertThat(documents.get(0).getText()).contains("Hello, world", "How are you", "I'm doing great",
				"This is a test");
	}

	/**
	 * Test splitting long text. Verifies handling of text that exceeds default chunk
	 * size.
	 */
	@Test
	void testSplitLongText() {
		// Generate a very long text that will exceed the default chunk size (1024
		// tokens)
		StringBuilder longText = new StringBuilder();
		String longSentence = "This is a very long sentence with many words that will contribute to the total token count and eventually force the text to be split into multiple chunks because it exceeds the default chunk size limit of 1024 tokens. ";
		// Repeat the sentence enough times to ensure we exceed the chunk size
		for (int i = 0; i < 50; i++) {
			longText.append(longSentence);
		}
		Document doc = new Document(longText.toString());

		List<Document> documents = splitter.apply(Collections.singletonList(doc));

		// Verify that the text was split into multiple documents
		assertThat(documents).isNotNull();
		assertThat(documents).hasSizeGreaterThan(1);
		// Verify that each document contains part of the original text
		documents.forEach(document -> assertThat(document.getText()).contains("This is a very long sentence"));
	}

	/**
	 * Test splitting text with multiple line breaks. Verifies handling of text with
	 * various types of line breaks.
	 */
	@Test
	void testSplitTextWithLineBreaks() {
		String text = "First sentence.\nSecond sentence.\r\nThird sentence.\rFourth sentence.";
		Document doc = new Document(text);
		List<Document> documents = splitter.apply(Collections.singletonList(doc));

		assertThat(documents).isNotNull();
		assertThat(documents.get(0).getText()).contains("First sentence", "Second sentence", "Third sentence",
				"Fourth sentence");
	}

	/**
	 * Test splitting text with single character sentences. Verifies handling of very
	 * short sentences.
	 */
	@Test
	void testSplitSingleCharacterSentences() {
		String text = "A. B. C. D.";
		Document doc = new Document(text);
		List<Document> documents = splitter.apply(Collections.singletonList(doc));

		assertThat(documents).isNotNull();
		assertThat(documents).hasSize(1);
		assertThat(documents.get(0).getText()).contains("A", "B", "C", "D");
	}

	/**
	 * Test splitting multiple documents. Verifies handling of multiple input documents.
	 */
	@Test
	void testSplitMultipleDocuments() {
		List<Document> inputDocs = new ArrayList<>();
		inputDocs.add(new Document("First document. With multiple sentences."));
		inputDocs.add(new Document("Second document. Also with multiple sentences."));

		List<Document> documents = splitter.apply(inputDocs);
		assertThat(documents).isNotNull();
		assertThat(documents).hasSizeGreaterThan(1);
	}

}

小结

Spring AI Alibaba提供了SentenceSplitter,它使用了opennlp的SentenceDetectorME进行拆分,其构造器会加载/opennlp/opennlp-en-ud-ewt-sentence-1.2-2.5.0.bin这个SentenceModel。

doc

相关推荐
蔗理苦9 分钟前
2025-10-07 Python不基础 20——全局变量与自由变量
开发语言·python
xiaohanbao0915 分钟前
理解神经网络流程
python·神经网络
韩立学长16 分钟前
【开题答辩实录分享】以《基于Python的旅游网站数据爬虫研究》为例进行答辩实录分享
python·旅游
心无旁骛~30 分钟前
【OpenArm|Control】openarm机械臂ROS2仿真控制
人工智能·ros
程序员陆业聪1 小时前
AI智能体的未来:从语言泛化到交互革命
人工智能
小小程序媛(*^▽^*)1 小时前
第十二届全国社会媒体处理大会笔记
人工智能·笔记·学习·ai
却道天凉_好个秋1 小时前
OpenCV(二):加载图片
人工智能·opencv·计算机视觉
音视频牛哥1 小时前
系统级超低延迟音视频直播模块时代:如何构建可控、可扩展的实时媒体底座
人工智能·音视频·大牛直播sdk·rtsp播放器·rtmp播放器·rtsp服务器·rtmp同屏推流
学無芷境2 小时前
VOCO摘要
人工智能
小熊出擊2 小时前
【pytest】finalizer 执行顺序:FILO 原则
python·测试工具·单元测试·pytest