如何搭建spark yarn 模式的集群集群。

以下是的 Spark YARN 模式集群搭建步骤:

一、环境准备

  1. 服务器规划
  • 至少 3 台节点:1 台主节点(运行 HDFS NameNode、YARN ResourceManager),2 台从节点(运行 HDFS DataNode、YARN NodeManager)。

  • 软件要求:JDK 1.8+、Hadoop 3.x(含 HDFS 和 YARN)、Spark 3.x。

  1. 基础配置
  • 关闭防火墙和 SELinux:

bash

systemctl stop firewalld && systemctl disable firewalld

sed -i 's/SELINUX=enforcing/SELINUX=disabled/' /etc/selinux/config

  • 配置主节点到从节点的 SSH 免密登录。

  • 同步系统时间(如使用 ntpdate )。

二、安装与配置 Hadoop(YARN 依赖)

  1. 解压安装

bash

tar -zxvf hadoop-3.x.tar.gz -C /opt/

mv /opt/hadoop-3.x /opt/hadoop

  1. 配置环境变量

在 ~/.bashrc 中添加:

bash

export HADOOP_HOME=/opt/hadoop

export PATH=PATH:HADOOP_HOME/bin:$HADOOP_HOME/sbin

执行 source ~/.bashrc 生效。

  1. 修改核心配置文件
  • hadoop-env.sh :指定 JDK 路径(如 export JAVA_HOME=/usr/java/jdk1.8.0_301 )。

  • core-site.xml :

xml

<property>

<name>fs.defaultFS</name>

<value>hdfs://主节点IP:9000</value>

</property>

  • hdfs-site.xml :

xml

<property>

<name>dfs.replication</name>

<value>2</value> <!-- 数据副本数,根据节点数调整 -->

</property>

  • yarn-site.xml :

xml

<property>

<name>yarn.resourcemanager.hostname</name>

<value>主节点IP</value>

</property>

  1. 启动 Hadoop

bash

hdfs namenode -format # 首次初始化 namenode

start-dfs.sh # 启动 HDFS

start-yarn.sh # 启动 YARN

三、安装与配置 Spark

  1. 解压安装

bash

tar -zxvf spark-3.x-bin-hadoop3.x.tgz -C /opt/

mv /opt/spark-3.x-bin-hadoop3.x /opt/spark

  1. 配置环境变量

在 ~/.bashrc 中添加:

bash

export SPARK_HOME=/opt/spark

export PATH=PATH:SPARK_HOME/bin:$SPARK_HOME/sbin

执行 source ~/.bashrc 生效。

  1. 修改 Spark 配置

bash

cp /opt/spark/conf/spark-env.sh.template /opt/spark/conf/spark-env.sh

echo "export HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop" >> /opt/spark/conf/spark-env.sh

echo "export SPARK_MASTER_IP=主节点IP" >> /opt/spark/conf/spark-env.sh

  • 编辑 slaves 文件(无后缀),添加从节点 IP(每行一个,如 从节点1IP 从节点2IP )。
  1. 分发到从节点

bash

scp -r /opt/spark 从节点1IP:/opt/

scp -r /opt/spark 从节点2IP:/opt/

从节点执行 source ~/.bashrc 生效。

四、启动 Spark 集群(YARN 模式)

Spark on YARN 无需单独启动 Spark 集群,直接提交任务到 YARN 即可:

  1. 提交任务示例

bash

spark-submit \

--master yarn \

--deploy-mode cluster \ # 集群模式(AM 运行在 YARN 中)

--executor-memory 2g \

--num-executors 2 \

/opt/spark/examples/jars/spark-examples_*.jar wordcount \

hdfs:///input.txt hdfs:///output

  1. 验证
  • 通过 YARN 界面(默认端口 8088 )查看任务运行状态。

  • 通过 Spark 历史服务器(配置 spark.history.fs.logDirectory 并启动 start-history-server.sh )查看任务日志。

关键说明

  • YARN 模式特点:Spark 任务直接运行在 YARN 资源管理器上,无需维护独立的 Spark 集群。

  • 配置调优:根据服务器资源调整 yarn.nodemanager.resource.memory-mb (YARN 内存)和 Spark 任务参数(如 --executor-memory )。

相关推荐
Light601 天前
从“报告”到“能力”——构建智能化、可审计的数据治理闭环——领码 SPARK 数据质量平台白皮书
大数据·分布式·spark
火龙谷1 天前
day2-采集数据
spark
大厂技术总监下海2 天前
从Hadoop MapReduce到Apache Spark:一场由“磁盘”到“内存”的速度与范式革命
大数据·hadoop·spark·开源
麦麦大数据2 天前
F052pro 基于spark推荐的中医古籍知识图谱可视化推荐系统|spark mlib|hadoop|docker集群
docker·spark-ml·spark·知识图谱·可是还·中医推荐·ehcarts
巧克力味的桃子3 天前
Spark 课程核心知识点复习汇总
大数据·分布式·spark
Light603 天前
智能重构人货场:领码SPARK破解快消行业增长困局的全景解决方案
spark·数字化转型·ai大模型·智能营销·快消行业·供应链优化
叫我:松哥3 天前
基于大数据和深度学习的智能空气质量监测与预测平台,采用Spark数据预处理,利用TensorFlow构建LSTM深度学习模型
大数据·python·深度学习·机器学习·spark·flask·lstm
火龙谷4 天前
day1-部署集群
spark
火龙谷4 天前
day3-构建数仓
spark
阿里云大数据AI技术5 天前
迅雷基于阿里云 EMR Serverless Spark 实现数仓资源效率与业务提升
spark