OpenCv实战笔记(4)基于opencv实现ORB特征匹配检测

一、原理作用

ORB 原理 (Oriented FAST and Rotated BRIEF):

特征点检测:使用 FAST 算法检测角点(关键点)。

方向计算:为每个关键点分配主方向,增强旋转不变性。

特征描述:使用 BRIEF(快速二进制描述符),通过图像灰度比较构造描述子。

描述子旋转:将 BRIEF 描述子旋转对齐主方向,增强旋转鲁棒性。
ORB作用

提取图像中稳定、重复性强的关键点;生成可用于图像匹配、识别、跟踪的紧凑二进制描述子。
应用场景:图像匹配(如拼接、全景)、 SLAM / 视觉里程计(机器人/无人车定位)、物体识别与检测、图像配准与对齐、图像检索

二、实现效果
三、参考代码

cpp 复制代码
void demo(const cv::Mat& img1, const cv::Mat& img2, cv::Mat& outputImg) {
    if (img1.empty() || img2.empty()) {
        std::cerr << "[feature_matching] Error: Input images are empty." << std::endl;
        return;
    }

    cv::Ptr<cv::ORB> orb = cv::ORB::create();

    std::vector<cv::KeyPoint> kp1, kp2;
    cv::Mat desc1, desc2;
    orb->detectAndCompute(img1, cv::noArray(), kp1, desc1);
    orb->detectAndCompute(img2, cv::noArray(), kp2, desc2);

    if (desc1.empty() || desc2.empty()) {
        std::cerr << "[feature_matching] Warning: Descriptor computation failed." << std::endl;
        return;
    }

    cv::BFMatcher matcher(cv::NORM_HAMMING);

    std::vector<std::vector<cv::DMatch>> knn_matches;
    matcher.knnMatch(desc1, desc2, knn_matches, 2);

    std::vector<cv::DMatch> good_matches;
    for (const auto& m : knn_matches) {
        if (m.size() >= 2 && m[0].distance < 0.75f * m[1].distance) {
            good_matches.push_back(m[0]);
        }
    }

    cv::drawMatches(img1, kp1, img2, kp2, good_matches, outputImg);
}
//应用
void MainWindow::sltOrb()
{
    // 加载两张灰度图像
    cv::Mat img1 = cv::imread("img1.jpg", cv::IMREAD_GRAYSCALE);
    cv::Mat img2 = cv::imread("img2.jpg", cv::IMREAD_GRAYSCALE);
    cv::Mat output;

    // 调用封装好的 ORB 特征匹配函数
    feature_matching::demo(img1, img2, output);

    // 显示结果图像
    if (!output.empty()) {
        cv::imshow("Feature Matching Result", output);
        cv::waitKey(0);
    }
}

欢迎关注我,一起交流!

相关推荐
白熊1889 分钟前
【计算机视觉】OpenCV项目实战:基于OpenCV的图像分割技术深度解析与实践指南
人工智能·opencv·计算机视觉
carpell22 分钟前
【语义分割专栏】先导篇:常用数据集(VOC、Camvid、Cityscape、ADE20k、COCO)
人工智能·深度学习·计算机视觉·语义分割
cliff,1 小时前
数据提取之BeautifulSoup4快速使用
笔记·python·学习
带娃的IT创业者1 小时前
《AI大模型应知应会100篇》第58篇:Semantic Kernel:微软的大模型应用框架
人工智能·microsoft·flask
珊瑚里的鱼1 小时前
第八讲 | stack和queue的使用及其模拟实现
开发语言·c++·笔记·visualstudio·stl·学习方法·visual studio
泡芙萝莉酱1 小时前
各省份发电量数据(2005-2022年)-社科数据
大数据·人工智能·深度学习·数据挖掘·数据分析·毕业论文·数据统计
threelab1 小时前
02.three官方示例+编辑器+AI快速学习webgl_animation_skinning_blending
人工智能·学习·编辑器
wei_shuo4 小时前
OB Cloud 云数据库V4.3:SQL +AI全新体验
数据库·人工智能·sql
努力的搬砖人.4 小时前
AI生成视频推荐
人工智能
想要成为计算机高手5 小时前
Helix:一种用于通用人形控制的视觉语言行动模型
人工智能·计算机视觉·自然语言处理·大模型·vla