OpenCv实战笔记(4)基于opencv实现ORB特征匹配检测

一、原理作用

ORB 原理 (Oriented FAST and Rotated BRIEF):

特征点检测:使用 FAST 算法检测角点(关键点)。

方向计算:为每个关键点分配主方向,增强旋转不变性。

特征描述:使用 BRIEF(快速二进制描述符),通过图像灰度比较构造描述子。

描述子旋转:将 BRIEF 描述子旋转对齐主方向,增强旋转鲁棒性。
ORB作用

提取图像中稳定、重复性强的关键点;生成可用于图像匹配、识别、跟踪的紧凑二进制描述子。
应用场景:图像匹配(如拼接、全景)、 SLAM / 视觉里程计(机器人/无人车定位)、物体识别与检测、图像配准与对齐、图像检索

二、实现效果
三、参考代码

cpp 复制代码
void demo(const cv::Mat& img1, const cv::Mat& img2, cv::Mat& outputImg) {
    if (img1.empty() || img2.empty()) {
        std::cerr << "[feature_matching] Error: Input images are empty." << std::endl;
        return;
    }

    cv::Ptr<cv::ORB> orb = cv::ORB::create();

    std::vector<cv::KeyPoint> kp1, kp2;
    cv::Mat desc1, desc2;
    orb->detectAndCompute(img1, cv::noArray(), kp1, desc1);
    orb->detectAndCompute(img2, cv::noArray(), kp2, desc2);

    if (desc1.empty() || desc2.empty()) {
        std::cerr << "[feature_matching] Warning: Descriptor computation failed." << std::endl;
        return;
    }

    cv::BFMatcher matcher(cv::NORM_HAMMING);

    std::vector<std::vector<cv::DMatch>> knn_matches;
    matcher.knnMatch(desc1, desc2, knn_matches, 2);

    std::vector<cv::DMatch> good_matches;
    for (const auto& m : knn_matches) {
        if (m.size() >= 2 && m[0].distance < 0.75f * m[1].distance) {
            good_matches.push_back(m[0]);
        }
    }

    cv::drawMatches(img1, kp1, img2, kp2, good_matches, outputImg);
}
//应用
void MainWindow::sltOrb()
{
    // 加载两张灰度图像
    cv::Mat img1 = cv::imread("img1.jpg", cv::IMREAD_GRAYSCALE);
    cv::Mat img2 = cv::imread("img2.jpg", cv::IMREAD_GRAYSCALE);
    cv::Mat output;

    // 调用封装好的 ORB 特征匹配函数
    feature_matching::demo(img1, img2, output);

    // 显示结果图像
    if (!output.empty()) {
        cv::imshow("Feature Matching Result", output);
        cv::waitKey(0);
    }
}

欢迎关注我,一起交流!

相关推荐
苗老大2 分钟前
MMRL: Multi-Modal Representation Learning for Vision-Language Models(多模态表示学习)
人工智能·学习·语言模型
中达瑞和-高光谱·多光谱13 分钟前
中达瑞和SHIS高光谱相机在黑色水彩笔墨迹鉴定中的应用
人工智能·数码相机
F_D_Z31 分钟前
8K样本在DeepSeek-R1-7B模型上的复现效果
人工智能·deepseek·deepseek-r1-7b
xhyu611 小时前
【学习笔记】On the Biology of a Large Language Model
笔记·学习·语言模型
小白杨树树1 小时前
【SSM】SpringMVC学习笔记7:前后端数据传输协议和异常处理
笔记·学习
地藏Kelvin1 小时前
Spring Ai 从Demo到搭建套壳项目(二)实现deepseek+MCP client让高德生成昆明游玩4天攻略
人工智能·spring boot·后端
猫天意1 小时前
【深度学习】为什么2个3×3的卷积可以相当于一个5×5的卷积核?为什么3个3×3的卷积相当于一个7×7的卷积核,到底区别在哪里?我们该如何使用?
人工智能·深度学习·神经网络·目标检测·视觉检测
AiTEN_Robotics1 小时前
仓库自动化搬运:自动叉车与AGV选型要点及核心技术解析
人工智能·机器人·自动化
飞哥数智坊2 小时前
Coze实战第12讲:轻松一句话搞定三餐计划、采购和制作,让AI助你健康饮食
人工智能·coze