Spark-Core(RDD行动算子)

一、RDD行动算子

行动算子就是会触发action的算子,触发action的含义就是真正的计算数据。

1、reduce

  • 函数签名:
Scala 复制代码
def reduce(f: (T, T) => T): T
  • 函数说明:聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据。

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val reduceResult: Int = rdd.reduce(_+_)
println(reduceResult)

2、 collect

  • 函数签名:
Scala 复制代码
def collect(): Array[T]
  • 函数说明:在驱动程序中,以数组 Array 的形式返回数据集的所有元素

举栗:

Scala 复制代码
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(sparkConf)

    val rdd = sc.makeRDD(List(1,2,3,4),2)
    val ints = rdd.collect()
    println(ints.mkString(","))

    sc.stop()

3、 foreach

  • 函数签名:
Scala 复制代码
def foreach(f: T => Unit): Unit = withScope {
 val cleanF = sc.clean(f)
 sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
  • 函数说明:分布式遍历 RDD 中的每一个元素,调用指定函数

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
rdd.collect().foreach(println)

4、count

  • 函数签名:
Scala 复制代码
def count(): Long
  • 函数说明:返回 RDD 中元素的个数

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val countResult: Long = rdd.count()
println(countResult)

5、first

  • 函数签名:
Scala 复制代码
def first(): T
  • 函数说明:返回 RDD 中的第一个元素

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val firstResult: Int = rdd.first()
println(firstResult)

6、take

  • 函数签名:
Scala 复制代码
def take(num: Int): Array[T]
  • 函数说明:返回一个由 RDD 的前 n 个元素组成的数组

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val takeResult: Array[Int] = rdd.take(2)
takeResult.foreach(println)

7、takeOrdered

  • 函数签名:
Scala 复制代码
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
  • 函数说明:返回该 RDD 排序后的前 n 个元素组成的数组

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1,3,2,4))
val result: Array[Int] = rdd.takeOrdered(2)
result.foreach(println)

8、aggregate

  • 函数签名:
Scala 复制代码
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
  • 函数说明:分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4),8)
// 将该 RDD 所有元素相加得到结果
val result1: Int = rdd.aggregate(0)(_+_, _+_)
val result2: Int = rdd.aggregate(10)(_+_,_+_)

println(result1)
println("**********")

9、fold

  • 函数签名:
Scala 复制代码
def fold(zeroValue: T)(op: (T, T) => T): T
  • 函数说明:折叠操作,aggregate 的简化版操作

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)
println(foldResult)

10、countByKey

  • 函数签名:
Scala 复制代码
def countByKey(): Map[K, Long]
  • 函数说明:统计每种 key 的个数

举栗:

Scala 复制代码
val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2,"b"), (3, "c"), (3, "c")))
val result: collection.Map[Int, Long] = rdd.countByKey()
print(result)

11、 save 相关算子

  • 函数签名:
Scala 复制代码
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
 path: String,
 codec: Option[Class[_ <: CompressionCodec]] = None): Unit //了解即可
  • 函数说明:将数据保存到不同格式的文件中

举栗:

Scala 复制代码
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
// 保存成 Text 文件
rdd.saveAsTextFile("Spark-core/output/output")
// 序列化成对象保存到文件
rdd.saveAsObjectFile("Spark-core/output/output1")
相关推荐
2501_938782091 天前
《大数据框架选型指南:Hadoop 与 Spark 的性能、成本与扩展性对比》
大数据·hadoop·spark
TMT星球1 天前
AI重构兴趣内容与营销生态,驱动消费全链路升级
大数据·人工智能·重构
HitpointNetSuite1 天前
科技行业ERP系统选择指南:Oracle NetSuite的全面解析
大数据·科技·netsuite·企业·erp
北邮-吴怀玉1 天前
6.1.1.3 大数据方法论与实践指南-SparkStreaming 任务优化实践
大数据·flink·spark·数据治理
晨陌y1 天前
从 0 到 1 开发 Rust 分布式日志服务:高吞吐设计 + 存储优化,支撑千万级日志采集
开发语言·分布式·rust
小码过河.1 天前
Rabbitmq扇形队列取消绑定交换机之后任然接收消息问题
分布式·rabbitmq·ruby
yangmf20401 天前
如何使用 INFINI Gateway 增量迁移 ES 数据
大数据·数据库·elasticsearch·搜索引擎·gateway
北邮-吴怀玉1 天前
8.1.1 大数据方法论与实践指南-埋点需求流程
大数据·数据治理
数智前线1 天前
筑牢智算“地基”:华为以RAS理念重塑AIDC建设新模式
大数据·人工智能
CAE虚拟与现实1 天前
论文一篇:加权几何平均组合预测方法对数均方误差的分解
大数据·加权平均