支持向量机案例

以下是一个使用支持向量机(SVM)对鸢尾花数据集进行分类的案例:

1. 数据集介绍

鸢尾花数据集是一类多重变量分析的数据集,共有四个属性列和一个品种类别列,用于分类的属性包括花萼长度、花萼宽度、花瓣长度、花瓣宽度,类别包括山鸢尾、变色鸢尾和维吉尼亚鸢尾三类。该数据集通常被用于分类算法的测试和验证。

2. 数据准备

  • 首先导入必要的库,包括用于数据处理的pandas、用于数据分割的train_test_split、支持向量机模型SVC以及用于评估模型的accuracy_score等。

python

复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
  • 然后读取鸢尾花数据集,假设数据集保存在名为iris.csv的文件中。

python

复制代码
data = pd.read_csv('iris.csv')
  • 接着将数据集分为特征(X)和目标(y)。特征是用于分类的属性,目标是鸢尾花的类别。

python

复制代码
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
  • 最后将数据集划分为训练集和测试集,通常将 70% 的数据用于训练,30% 的数据用于测试。

python

复制代码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

3. 模型训练

  • 创建一个支持向量机模型,这里使用线性核函数。

python

复制代码
model = SVC(kernel='linear')
  • 使用训练数据对模型进行训练。

python

复制代码
model.fit(X_train, y_train)

4. 模型评估

  • 使用测试集进行预测。

python

复制代码
y_pred = model.predict(X_test)
  • 计算模型的准确率。

python

复制代码
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

5. 结果分析

通过上述步骤,我们可以得到支持向量机模型在鸢尾花数据集上的分类准确率。如果准确率较高,说明模型能够较好地对鸢尾花进行分类。同时,还可以进一步分析模型的混淆矩阵、精确率、召回率等指标,以更全面地评估模型的性能。此外,还可以尝试不同的核函数、调整模型的超参数,如惩罚参数C等,来优化模型的性能。

相关推荐
小O的算法实验室36 分钟前
2025年TRE SCI1区TOP,随机环境下无人机应急医疗接送与配送的先进混合方法,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
小白程序员成长日记1 小时前
2025.11.06 力扣每日一题
算法·leetcode
暴风鱼划水1 小时前
算法题(Python)数组篇 | 4.长度最小的子数组
python·算法·力扣
gugugu.1 小时前
算法:二分算法类型题目总结---(含二分模版)
算法
大G的笔记本1 小时前
算法篇常见面试题清单
java·算法·排序算法
B站计算机毕业设计之家2 小时前
大数据python招聘数据分析预测系统 招聘数据平台 +爬虫+可视化 +django框架+vue框架 大数据技术✅
大数据·爬虫·python·机器学习·数据挖掘·数据分析
7澄12 小时前
深入解析 LeetCode 数组经典问题:删除每行中的最大值与找出峰值
java·开发语言·算法·leetcode·intellij idea
AI科技星2 小时前
宇宙的几何诗篇:当空间本身成为运动的主角
数据结构·人工智能·经验分享·算法·计算机视觉
前端小L2 小时前
二分查找专题(二):lower_bound 的首秀——精解「搜索插入位置」
数据结构·算法
老黄编程3 小时前
三维空间圆柱方程
算法·几何