MATLAB中矩阵和数组的区别

文章目录


前言

在 MATLAB 中,矩阵(Matrix) 和 数组(Array) 的概念既有联系又有区别,主要体现在以下几个方面。


环境配置

MATLAB下载安装教程:https://blog.csdn.net/2501_91538706/article/details/147232213

1. 数据结构本质

  • 矩阵(Matrix)
    是二维的数组,即行数和列数明确的二维结构。
    严格遵循线性代数的规则,例如矩阵乘法要求左矩阵的列数等于右矩阵的行数。
  • 数组(Array)
    是更通用的数据结构,可以是任意维度(一维、二维、三维...)。
    二维数组可以看作矩阵的扩展,而高维数组(如三维数组)则无法用矩阵直接表示。

2. 运算规则

(1)基本运算

  • 矩阵运算:遵循线性代数规则,使用标准运算符(如 *、/、^)。

A = [1 2; 3 4];

B = [5 6; 7 8];

C = A * B; % 矩阵乘法:[19 22; 43 50]

  • 数组运算:按元素执行操作,使用点运算符(如 .*、./、.^)。

A = [1 2; 3 4];

B = [5 6; 7 8];

C = A .* B; % 元素-wise乘法:[5 12; 21 32]

(2)特殊运算

  • 矩阵转置:使用单引号 '。

A = [1 2; 3 4];

A' % 结果:[1 3; 2 4]

  • 数组转置:对于复数数组,需用 .'' 避免共轭。

A = [1+1i, 2+2i];

A.' % 非共轭转置:[1+1i; 2+2i]

3. 函数与操作

  • 矩阵专用函数:
    inv(A):矩阵求逆
    det(A):行列式计算
    eig(A):特征值与特征向量
  • 数组通用函数:
    size(A):返回各维度大小(如 [2 3] 表示 2 行 3 列)
    reshape(A, m, n):重构数组维度
    cat(dim, A, B):沿指定维度拼接

4. 高维支持

  • 矩阵:仅支持二维(行 × 列)。
  • 数组:支持任意维度(如三维数组 A(2,3,4) 表示 2×3×4 的立方体结构)。
    示例:创建三维数组

A = rand(2, 3, 4); % 创建2×3×4的随机数组

5. 创建方式

  • 矩阵创建:

A = [1 2; 3 4]; % 直接创建二维矩阵

  • 数组创建:

A = [1 2 3]; % 一维数组(行向量)

B = rand(2,3,4); % 三维数组

  • 优先使用数组:MATLAB 中数组是更通用的数据结构,支持向量化运算,代码更简洁高效。
  • 仅在必要时用矩阵:当明确需要线性代数运算(如矩阵求逆、特征值计算)时使用矩阵。
相关推荐
种时光的人16 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
renhongxia117 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
CV@CV17 小时前
2026自动驾驶商业化提速——从智驾平权到Robotaxi规模化落地
人工智能·机器学习·自动驾驶
Zfox_19 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
小白|19 小时前
CANN在自动驾驶感知中的应用:构建低延迟、高可靠多传感器融合推理系统
人工智能·机器学习·自动驾驶
ringking12320 小时前
autoware-1:安装环境cuda/cudnn/tensorRT库函数的判断
人工智能·算法·机器学习
算法狗220 小时前
大模型面试题:混合精度训练的缺点是什么
人工智能·深度学习·机器学习·语言模型
聆风吟º20 小时前
CANN ops-math 应用指南:从零搭建高效、可复用的自定义 AI 计算组件
人工智能·机器学习·cann
小白|20 小时前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
HyperAI超神经1 天前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新