import org.apache.spark.{Partitioner, SparkConf, SparkContext}
object PartitionCustom {
// 分区器决定哪一个元素进入某一个分区
// 目标: 把10个分区器,偶数分在第一个分区,奇数分在第二个分区
// 自定义分区器
// 1. 创建一个类继承Partitioner
// 2. 重写两个方法
// 3. 在创建RDD的时候,partitionBy方法 指定分区器
// 创建一个类继承Partitioner
class MyPartitioner extends Partitioner{
override def numPartitions: Int = 2 // 两个分区,编号就是:0,1
// key - value
override def getPartition(key: Any): Int = {
if(key.asInstanceOf[Int] % 2 == 0){
0
}else{
1
}
}
}
def main(args: Array[String]): Unit = {
// 创建SparkContext
val conf = new SparkConf().setAppName("PartitionCustom").setMaster("local[*]")
val sc = new SparkContext(conf)
// 初始数据
val rdd = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
//val rdd = sc.parallelize(List( (1,1), (2,2))
// 自定义分区器使用的前提:数据是key-value类型
val rdd1 = rdd.map(num =>(num,num))
// 使用自定义分区器
val rdd2 = rdd1.partitionBy(new MyPartitioner)
// 在分区完成之后的基础上,只保留key
val rdd3 = rdd2.map(t => t._1)
rdd3.saveAsTextFile("output6")
}
}
spark小任务
只因只因爆2025-05-15 18:20
相关推荐
AI智能探索者1 天前
揭秘大数据领域特征工程的核心要点做cv的小昊1 天前
【TJU】信息检索与分析课程笔记和练习(8)(9)发现系统和全文获取、专利与知识产权基本知识AC赳赳老秦1 天前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解C7211BA1 天前
通义灵码和Qoder的差异三不原则1 天前
银行 AIOps 实践拆解:金融级故障自愈体系如何搭建大厂技术总监下海1 天前
数据湖加速、实时数仓、统一查询层:Apache Doris 如何成为现代数据架构的“高性能中枢”?新诺韦尔API1 天前
手机三要素验证不通过的原因?成长之路5141 天前
【数据集】分地市全社会用电量统计数据(2004-2022年)InfiSight智睿视界1 天前
门店智能体技术如何破解美容美发连锁的“标准执行困境”前端不太难1 天前
从本地到多端:HarmonyOS 分布式数据管理实战详解