import org.apache.spark.{Partitioner, SparkConf, SparkContext}
object PartitionCustom {
// 分区器决定哪一个元素进入某一个分区
// 目标: 把10个分区器,偶数分在第一个分区,奇数分在第二个分区
// 自定义分区器
// 1. 创建一个类继承Partitioner
// 2. 重写两个方法
// 3. 在创建RDD的时候,partitionBy方法 指定分区器
// 创建一个类继承Partitioner
class MyPartitioner extends Partitioner{
override def numPartitions: Int = 2 // 两个分区,编号就是:0,1
// key - value
override def getPartition(key: Any): Int = {
if(key.asInstanceOf[Int] % 2 == 0){
0
}else{
1
}
}
}
def main(args: Array[String]): Unit = {
// 创建SparkContext
val conf = new SparkConf().setAppName("PartitionCustom").setMaster("local[*]")
val sc = new SparkContext(conf)
// 初始数据
val rdd = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
//val rdd = sc.parallelize(List( (1,1), (2,2))
// 自定义分区器使用的前提:数据是key-value类型
val rdd1 = rdd.map(num =>(num,num))
// 使用自定义分区器
val rdd2 = rdd1.partitionBy(new MyPartitioner)
// 在分区完成之后的基础上,只保留key
val rdd3 = rdd2.map(t => t._1)
rdd3.saveAsTextFile("output6")
}
}
spark小任务
只因只因爆2025-05-15 18:20
相关推荐
小马爱打代码8 分钟前
实战:分布式开源监控Zabbix筑梦之人1 小时前
Spark-3.5.7文档2 - RDD 编程指南happy_king_zi2 小时前
RabbitMQ 是否也支持消费组艾莉丝努力练剑3 小时前
【C++:红黑树】深入理解红黑树的平衡之道:从原理、变色、旋转到完整实现代码ImproveJin3 小时前
Flink Source源码解析PONY LEE3 小时前
Flink Rebalance触发乱序的问题snowful world3 小时前
实验四 综合数据流处理-Storm案例实现金融Tech趋势派3 小时前
金融机构如何用企业微信实现客户服务优化?Acrelhuang3 小时前
筑牢用电防线:Acrel-1000 自动化系统赋能 35kV 园区高效供电-安科瑞黄安南