写spark程序数据计算( 数据库的计算,求和,汇总之类的)连接mysql数据库,写入计算结果

  1. 添加依赖

在项目的 `pom.xml`(Maven)中添加以下依赖:

```xml

<!-- Spark SQL -->

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-sql_2.12</artifactId>

<version>3.3.0</version>

</dependency>

<!-- MySQL Connector -->

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

<version>8.0.33</version>

</dependency>

代码

import org.apache.spark.sql.{SparkSession, SaveMode}

object SparkMySQLDemo {

def main(args: Array[String]): Unit = {

// 创建 SparkSession

val spark = SparkSession.builder()

.appName("SparkMySQLDemo")

.master("local[*]") // 生产环境需改为集群模式,如 yarn

.config("spark.sql.shuffle.partitions", "5") // 优化分区数

.getOrCreate()

// 设置 MySQL 连接参数

val jdbcUrl = "jdbc:mysql://localhost:3306/your_database"

val jdbcUsername = "your_username"

val jdbcPassword = "your_password"

try {

// 从 MySQL 读取数据

val df = spark.read

.format("jdbc")

.option("url", jdbcUrl)

.option("dbtable", "source_table") // 要读取的表名

.option("user", jdbcUsername)

.option("password", jdbcPassword)

.load()

// 执行计算(示例:按 category 分组求和)

val resultDF = df.groupBy("category")

.agg(

sum("amount").alias("total_amount"),

count("*").alias("record_count")

)

// 打印计算结果(调试用)

resultDF.show()

// 将结果写入 MySQL

resultDF.write

.format("jdbc")

.option("url", jdbcUrl)

.option("dbtable", "result_table") // 目标表名

.option("user", jdbcUsername)

.option("password", jdbcPassword)

.mode(SaveMode.Append) // 写入模式:覆盖/追加

.save()

println("数据写入 MySQL 成功!")

} catch {

case e: Exception => e.printStackTrace()

} finally {

spark.stop()

}

}

}

相关推荐
王小王-1239 小时前
基于Hadoop的全国农产品批发价格数据分析与可视化与价格预测研究
大数据·hive·hadoop·flume·hadoop农产品价格分析·农产品批发价格·农产品价格预测
请提交用户昵称10 小时前
Spark运行架构
大数据·架构·spark
core51210 小时前
基于elk实现分布式日志
分布式·elk·日志·logstash
阿Paul果奶ooo12 小时前
Flink概述
大数据·flink
CDA数据分析师干货分享12 小时前
【CDA 新一级】学习笔记第1篇:数据分析的时代背景
大数据·笔记·学习·数据分析·cda证书·cda数据分析师
软件开发小陈13 小时前
“我店模式”:零售转型中的场景化突围
大数据
计算机毕业设计木哥14 小时前
基于大数据spark的医用消耗选品采集数据可视化分析系统【Hadoop、spark、python】
大数据·hadoop·python·信息可视化·spark·课程设计
xiao-xiang15 小时前
elasticsearch mapping和template解析(自动分词)!
大数据·elasticsearch·搜索引擎
sleetdream15 小时前
Flink DataStream 按分钟或日期统计数据量
大数据·flink
扶风呀16 小时前
分布式与微服务宝典
分布式·微服务·架构