解除diffusers库的prompt长度限制(SDXL版)

2025-5-21 注:本文只提供思路,没有解决"权重识别"、"BREAK"问题。

要想实现与webui一样的绘图效果与无限prompt,可参考diffusers/examples/community/lpw_stable_diffusion_xl.py

1、上代码

python 复制代码
from diffusers import StableDiffusionXLPipeline,EulerAncestralDiscreteScheduler

# 1. 加载模型
config_path = "anime_illust_diffusion_xl"
model_id="anime_illust_diffusion_xl/animeIllustDiffusion_v08.safetensors"
pipe = StableDiffusionXLPipeline.from_single_file(
    model_id, 
    dtype=torch.bfloat16,
    config=config_path,
    local_files_only=True)

pipe = pipe.to("cuda") 

# 2. 准备输入图像和提示词
#======================================
clip_skip = 1

prompt = 40 * "1girl, solo, black background,(best quality:1.5)" # 超出77长度限制
negative_prompt = "worst quality, low quality, multi views"

max_length = pipe.tokenizer.model_max_length
tokenizers = [pipe.tokenizer,pipe.tokenizer_2]
text_encoders = [pipe.text_encoder,pipe.text_encoder_2]
prompts = [prompt,prompt]
negative_prompts = [negative_prompt,negative_prompt]

prompt_embeds_list = []
negative_prompt_embeds_list= []

for prompt,negative_prompt, tokenizer, text_encoder in zip(prompts,negative_prompts, tokenizers, text_encoders):
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    input_ids = input_ids.to("cuda")
    negative_ids =tokenizer(negative_prompt, truncation=False, padding="max_length", max_length=input_ids.shape[-1], return_tensors="pt").input_ids                                                                                                     
    negative_ids = negative_ids.to("cuda")
    
    # 分段处理prompt
    concat_embeds = [] 
    neg_embeds = []
    for i in range(0, input_ids.shape[-1], max_length):
        embeds_1 = text_encoder(input_ids[:, i: i + max_length], output_hidden_states=True)
        pooled_prompt_embeds = embeds_1[0]
        concat_embeds.append(embeds_1.hidden_states[-(clip_skip+2)])
        
        embeds_2 = text_encoder(negative_ids[:, i: i + max_length],output_hidden_states=True)
        negative_pooled_prompt_embeds = embeds_2[0]
        neg_embeds.append(embeds_2.hidden_states[-2])
        

    # 拼接text_encoder结果
    # 例:(1,77,768)+(1,22,768) = (1,99,768)
    prompt_embeds = torch.cat(concat_embeds, dim=1)
    negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
    
    prompt_embeds_list.append(prompt_embeds)
    negative_prompt_embeds_list.append(negative_prompt_embeds)

# 拼接两个text_encoder的特征
# 例:(1,99,768)+(1,99,1280) = (1,99,2048)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

#=====================================

# 3. 设置生成参数
num_inference_steps = 28  # 推理步数,可根据需要调整
guidance_scale = 7     # 引导比例,控制生成图像与提示的匹配程度
generator = torch.Generator("cuda").manual_seed(31)
 


# 4. 执行生成
with torch.no_grad():
    images = pipe(
        #prompt=prompt,
        #negative_prompt=negative_prompt,
        prompt_embeds = prompt_embeds, 
        pooled_prompt_embeds = pooled_prompt_embeds,
        negative_prompt_embeds = negative_prompt_embeds, 
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,
        height = 1216,
        width= 832,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        clip_skip=clip_skip,
        num_images_per_prompt=2,
        generator = generator
    ).images

print(type(images))
# 5. 保存结果
for id in range(len(images)):
    images[id].save(f"output_image_{id}.png")

2、分析

需要准备下面四样东西:

prompt_embeds # 正向提示词编码

pooled_prompt_embeds # 正向提示词编码的全局池化

negative_prompt_embeds # 负向提示词编码

negative_pooled_prompt_embeds # 负向提示词的全局池化

前置知识:

  1. sdxl有两个text_encoder,不妨设为t1,t2:

将prompt输入t1,得到768维的数据;输入t2,得到1280维的数据

最后送入Unet进行cross_attention的,是拼接后2048维的数据

t1、t2的输入限制了大小,最大为77

2. pooled_prompt_embeds,这玩意的原理我不懂,不过生成方式在上面代码里有写

解决方案

把长度为99的prompt,拆分为77+22,分别输入text_encoder,然后将结果拼接

相关推荐
水如烟7 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学7 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19827 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮7 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手7 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋8 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-8 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView8 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7778 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云8 小时前
Claude Code:进入dash模式
人工智能