训练一个线性模型

复制代码
import tensorflow as tf
import pandas as pd

# 读取数据
data = pd.read_csv('../data/line_fit_data.csv').values
# 划分训练集和测试集
x = data[:-10, 0]   #第一列排除后10行
y = data[:-10, 1]   #第二列排除后10行
x_test = data[-10:, 0] #第一列后10行
y_test = data[-10:, 1] #第二列后10行

# 构建Sequential网络
model_net = tf.keras.models.Sequential()  # 实例化网络
model_net.add(tf.keras.layers.Dense(1, input_shape=(1, )))  # 添加全连接层
print(model_net.summary())

# 构建损失函数
model_net.compile(loss='mse', optimizer=tf.keras.optimizers.SGD(learning_rate=0.5))

# 模型训练
model_net.fit(x, y, verbose=1, epochs=20, validation_split=0.2)
pre = model_net.predict(x_test)

# 利用均方误差进行模型评价
y_test = pd.DataFrame(y_test)
pre = pd.DataFrame(pre)
mse = (sum(y_test - pre) ** 2) / 10
print('均方误差为:', mse)

总结

model_net.add() :向模型中添加层,第一层需指定 `input_shape` |

Dense(units=1) :定义全连接层 ,`units` 决定输出维度 |

`input_shape=(1,)` : 指定输入数据的形状 ,仅第一层需要,元组格式 |

model.summary(): 查看模型结构和参数数量

**`units=1`**:输出维度为1(即该层只有1个神经元)。

  • **`input_shape=(1,)`**:指定输入数据的形状为 `(1,)`(即每个样本是1个数值)。

**1. `model_net.compile()`:配置模型训练参数**

  • **作用**:定义模型的损失函数、优化器和评估指标。

  • **参数解析**:

  • **`loss='mse'`**:使用均方误差(Mean Squared Error)作为损失函数,适用于**回归任务**(如预测房价、温度等连续值)。

  • **`optimizer=tf.keras.optimizers.SGD(learning_rate=0.5)`**:

  • 优化器:随机梯度下降(Stochastic Gradient Descent, SGD)。

  • 学习率:`0.5`(较高的学习率,可能导致训练不稳定,需根据任务调整)。

  • **未显式指定 `metrics`**:如需要监控准确率等指标,可添加 `metrics=['mae']`(平均绝对误差)。


**2. `model_net.fit()`:模型训练**

  • **作用**:用训练数据拟合模型,更新权重参数。

  • **参数解析**:

  • **`x, y`**:输入数据和标签(假设 `x` 是特征,`y` 是目标值)。

  • **`verbose=1`**:显示训练进度条(`0`=不显示,`1`=显示进度条,`2`=仅显示轮次结果)。

  • **`epochs=20`**:训练20轮(所有数据完整遍历一次为一轮)。

  • **`validation_split=0.2`**:从训练数据中自动划分20%作为验证集(例如,若 `x` 有100个样本,则80个用于训练,20个用于验证)。

**`pd.DataFrame()`** 是 Pandas 库中用于创建或转换数据为 **二维表格结构**(DataFrame)的函数。

  • 这行代码的目的是将 `y_test`(可能是列表、NumPy 数组或其他格式)转换为 DataFrame,以便后续使用 Pandas 的功能(如数据操作、保存到文件、与其他 DataFrame 合并等)。
相关推荐
哈__几秒前
CANN加速图神经网络GNN推理:消息传递与聚合优化
人工智能·深度学习·神经网络
User_芊芊君子3 分钟前
CANN_MetaDef图定义框架全解析为AI模型构建灵活高效的计算图表示
人工智能·深度学习·神经网络
哈哈你是真的厉害16 分钟前
驾驭万亿参数 MoE:深度剖析 CANN ops-transformer 算子库的“核武库”
人工智能·深度学习·aigc·transformer
心疼你的一切26 分钟前
模态交响:CANN驱动的跨模态AIGC统一架构
数据仓库·深度学习·架构·aigc·cann
小羊不会打字32 分钟前
CANN 生态中的跨框架兼容桥梁:`onnx-adapter` 项目实现无缝模型迁移
c++·深度学习
白日做梦Q42 分钟前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
饭饭大王6661 小时前
CANN 生态中的自动化测试利器:`test-automation` 项目保障模型部署可靠性
深度学习
island13141 小时前
CANN HIXL 通信库深度解析:单边点对点数据传输、异步模型与异构设备间显存直接访问
人工智能·深度学习·神经网络
心疼你的一切1 小时前
解锁CANN仓库核心能力:从零搭建AIGC轻量文本生成实战(附代码+流程图)
数据仓库·深度学习·aigc·流程图·cann
2的n次方_1 小时前
CANN ascend-transformer-boost 深度解析:针对大模型的高性能融合算子库与算力优化机制
人工智能·深度学习·transformer