OpenCV CUDA模块图像过滤------用于创建一个最小值盒式滤波器(Minimum Box Filter)函数createBoxMinFilter()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

该函数创建的是一个 最小值滤波器(Minimum Filter),它对图像中每个像素邻域内的像素值取最小值。常用于:

  • 去除亮噪声(light noise)
  • 提取局部最小值区域
  • 腐蚀操作的替代方法之一

与 cv::cuda::createBoxMaxFilter 类似,但它是取邻域内像素的最小值。

参数

参数名 类型 描述
srcType int 输入图像的数据类型。目前仅支持:CV_8UC1、CV_8UC4。
ksize cv::Size 卷积核大小(宽 x 高),例如 cv::Size(3, 3)。建议使用奇数尺寸以保证锚点居中。
anchor cv::Point 锚点位置,默认为 (-1, -1) 表示中心点。
borderMode int 边界填充方式,常用值:cv::BORDER_DEFAULT, cv::BORDER_CONSTANT, cv::BORDER_REPLICATE 等。
borderVal cv::Scalar 如果 borderMode == BORDER_CONSTANT,则用该值填充边界,默认为黑色(全零)。

返回值

  • 返回一个指向 cv::cuda::Filter 的智能指针 cv::Ptrcv::cuda::Filter。
  • 可通过调用其 .apply() 方法来执行滤波操作。

代码示例

cpp 复制代码
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/cudafilters.hpp>

int main()
{
    // 读取图像(灰度图)
    cv::Mat h_img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( h_img.empty() )
    {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    // 上传到 GPU
    cv::cuda::GpuMat d_src, d_dst;
    d_src.upload( h_img );

    // 创建 Min Box Filter
    cv::Ptr< cv::cuda::Filter > minFilter = cv::cuda::createBoxMinFilter( d_src.type(),         // 输入图像类型(必须是 CV_8UC1 或 CV_8UC4)
                                                                          cv::Size( 5, 5 ),     // 卷积核大小
                                                                          cv::Point( -1, -1 ),  // 锚点默认为中心
                                                                          cv::BORDER_DEFAULT    // 默认边界处理
    );

    // 应用滤波器
    minFilter->apply( d_src, d_dst );

    // 下载结果回 CPU
    cv::Mat h_dst;
    d_dst.download( h_dst );

    // 显示结果
    cv::imshow( "Original", h_img );
    cv::imshow( "Min Filtered", h_dst );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
慢半拍iii几秒前
从零搭建CNN:如何高效调用ops-nn算子库
人工智能·神经网络·ai·cnn·cann
晟诺数字人5 分钟前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
蛋王派5 分钟前
DeepSeek-OCR-v2 模型解析和部署应用
人工智能·ocr
禁默11 分钟前
基于CANN的ops-cv仓库-多模态场景理解与实践
人工智能·cann
禁默19 分钟前
【硬核入门】无需板卡也能造 AI 算子?深度玩转 CANN ops-math 通用数学库
人工智能·aigc·cann
敏叔V58724 分钟前
AI智能体的工具学习进阶:零样本API理解与调用
人工智能·学习
徐小夕@趣谈前端33 分钟前
拒绝重复造轮子?我们偏偏花365天,用Vue3写了款AI协同的Word编辑器
人工智能·编辑器·word
阿里云大数据AI技术34 分钟前
全模态、多引擎、一体化,阿里云DLF3.0构建Data+AI驱动的智能湖仓平台
人工智能·阿里云·云计算
陈天伟教授34 分钟前
人工智能应用- 语言理解:05.大语言模型
人工智能·语言模型·自然语言处理
池央36 分钟前
CANN GE 深度解析:图编译器的核心优化策略、执行流调度与模型下沉技术原理
人工智能·ci/cd·自动化