OpenCV CUDA模块图像过滤------用于创建一个最小值盒式滤波器(Minimum Box Filter)函数createBoxMinFilter()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

该函数创建的是一个 最小值滤波器(Minimum Filter),它对图像中每个像素邻域内的像素值取最小值。常用于:

  • 去除亮噪声(light noise)
  • 提取局部最小值区域
  • 腐蚀操作的替代方法之一

与 cv::cuda::createBoxMaxFilter 类似,但它是取邻域内像素的最小值。

参数

参数名 类型 描述
srcType int 输入图像的数据类型。目前仅支持:CV_8UC1、CV_8UC4。
ksize cv::Size 卷积核大小(宽 x 高),例如 cv::Size(3, 3)。建议使用奇数尺寸以保证锚点居中。
anchor cv::Point 锚点位置,默认为 (-1, -1) 表示中心点。
borderMode int 边界填充方式,常用值:cv::BORDER_DEFAULT, cv::BORDER_CONSTANT, cv::BORDER_REPLICATE 等。
borderVal cv::Scalar 如果 borderMode == BORDER_CONSTANT,则用该值填充边界,默认为黑色(全零)。

返回值

  • 返回一个指向 cv::cuda::Filter 的智能指针 cv::Ptrcv::cuda::Filter。
  • 可通过调用其 .apply() 方法来执行滤波操作。

代码示例

cpp 复制代码
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/cudafilters.hpp>

int main()
{
    // 读取图像(灰度图)
    cv::Mat h_img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( h_img.empty() )
    {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    // 上传到 GPU
    cv::cuda::GpuMat d_src, d_dst;
    d_src.upload( h_img );

    // 创建 Min Box Filter
    cv::Ptr< cv::cuda::Filter > minFilter = cv::cuda::createBoxMinFilter( d_src.type(),         // 输入图像类型(必须是 CV_8UC1 或 CV_8UC4)
                                                                          cv::Size( 5, 5 ),     // 卷积核大小
                                                                          cv::Point( -1, -1 ),  // 锚点默认为中心
                                                                          cv::BORDER_DEFAULT    // 默认边界处理
    );

    // 应用滤波器
    minFilter->apply( d_src, d_dst );

    // 下载结果回 CPU
    cv::Mat h_dst;
    d_dst.download( h_dst );

    // 显示结果
    cv::imshow( "Original", h_img );
    cv::imshow( "Min Filtered", h_dst );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
风筝超冷1 分钟前
【Milvus合集】1.Milvus 的核心概念(collection、field、index、partition、segment)
人工智能·机器学习·milvus
边缘常驻民15 分钟前
PyTorch深度学习入门记录3
人工智能·pytorch·深度学习
阿里云大数据AI技术27 分钟前
[VLDB 2025]面向Flink集群巡检的交叉对比学习异常检测
大数据·人工智能·flink
a1504631 小时前
人工智能——图像梯度处理、边缘检测、绘制图像轮廓、凸包特征检测
人工智能·深度学习·计算机视觉
荼蘼1 小时前
基于 KNN 算法的手写数字识别项目实践
人工智能·算法·机器学习
wei_shuo1 小时前
亚马逊云科技 EC2 部署 Dify,集成 Amazon Bedrock 构建生成式 AI 应用
人工智能·amazon·amazon bedrock
ppo921 小时前
MCP简单应用:使用SpringAI + Cline + DeepSeek实现AI创建文件并写入内容
人工智能·后端
云卓SKYDROID2 小时前
无人机速度模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
UQI-LIUWJ3 小时前
论文笔记:Tuning Language Models by Proxy
论文阅读·人工智能·语言模型
大魔王(已黑化)3 小时前
OpenCV —— 绘制图形
人工智能·opencv·计算机视觉