pytorch LSTM 结构详解

最近项目用到了LSTM ,但是对LSTM 的输入输出不是很理解,对此,我详细查找了lstm 的资料

复制代码
import torch.nn as nn

class LSTMModel(nn.Module):
    def __init__(self, input_size=1, hidden_size=50, num_layers=2):
        super(LSTMModel, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, 1)  # 1 表示预测输出变量为1

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out # out 形状为(batch_size,1)
  • input_size=1:输入特征的维度,适用于单变量时间序列。

  • hidden_size=50:LSTM 隐藏层的维度,决定了模型的记忆能力。

  • num_layers=2:堆叠的 LSTM 层数,增加层数可以提升模型的表达能力。

  • batch_first=True :指定输入和输出的张量形状为 (batch_size, seq_len, input_size)

  • self.fc:一个全连接层,将 LSTM 的输出映射到最终的预测值。

  • batch_size 表示批次、seq_len 表示窗口大小、input_size 表示输入尺寸,单变量输入为1 ,多变量要基于个数变化

  • 初始化隐藏状态和细胞状态

    • h0c0 分别表示初始的隐藏状态和细胞状态,形状为 (num_layers, batch_size, hidden_size)

    • 在每次前向传播时,初始化为零张量。

  • LSTM 层处理

    • self.lstm(x, (h0, c0)):将输入 x 和初始状态传入 LSTM 层,输出 out 和新的状态。

    • out 的形状为 (batch_size, seq_len, hidden_size),包含了每个时间步的输出。

  • 全连接层映射

    • out[:, -1, :]:提取序列中最后一个时间步的输出。

    • self.fc(...):将提取的输出通过全连接层,得到最终的预测结果。

相关推荐
m0_626535201 小时前
some 知识点 knowledge
深度学习
Rabbit_QL1 小时前
【PyTorch】detach:从计算图中切断梯度的原理与实践
人工智能·pytorch·python
Coding茶水间3 小时前
基于深度学习的肾结石检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
FrameNotWork3 小时前
HarmonyOS 教学实战:从 0 写一个完整应用(真正能跑、能扩展)
pytorch·华为·harmonyos
Narrastory4 小时前
解剖注意力:从零构建Transformer的终极指南
深度学习
A7bert7774 小时前
【YOLOv5seg部署RK3588】模型训练→转换RKNN→开发板部署
linux·c++·人工智能·深度学习·yolo·目标检测
donkey_19934 小时前
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect
人工智能·深度学习·目标检测·计算机视觉·语义分割·实例分割
Mr.Lee jack5 小时前
【torch.compile】TorchDynamo 源码深度剖析
pytorch
怎么全是重名5 小时前
DeepLab(V3)
人工智能·深度学习·图像分割
星川皆无恙6 小时前
基于知识图谱+深度学习的大数据NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
大数据·人工智能·python·深度学习·自然语言处理·知识图谱