pytorch LSTM 结构详解

最近项目用到了LSTM ,但是对LSTM 的输入输出不是很理解,对此,我详细查找了lstm 的资料

复制代码
import torch.nn as nn

class LSTMModel(nn.Module):
    def __init__(self, input_size=1, hidden_size=50, num_layers=2):
        super(LSTMModel, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, 1)  # 1 表示预测输出变量为1

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out # out 形状为(batch_size,1)
  • input_size=1:输入特征的维度,适用于单变量时间序列。

  • hidden_size=50:LSTM 隐藏层的维度,决定了模型的记忆能力。

  • num_layers=2:堆叠的 LSTM 层数,增加层数可以提升模型的表达能力。

  • batch_first=True :指定输入和输出的张量形状为 (batch_size, seq_len, input_size)

  • self.fc:一个全连接层,将 LSTM 的输出映射到最终的预测值。

  • batch_size 表示批次、seq_len 表示窗口大小、input_size 表示输入尺寸,单变量输入为1 ,多变量要基于个数变化

  • 初始化隐藏状态和细胞状态

    • h0c0 分别表示初始的隐藏状态和细胞状态,形状为 (num_layers, batch_size, hidden_size)

    • 在每次前向传播时,初始化为零张量。

  • LSTM 层处理

    • self.lstm(x, (h0, c0)):将输入 x 和初始状态传入 LSTM 层,输出 out 和新的状态。

    • out 的形状为 (batch_size, seq_len, hidden_size),包含了每个时间步的输出。

  • 全连接层映射

    • out[:, -1, :]:提取序列中最后一个时间步的输出。

    • self.fc(...):将提取的输出通过全连接层,得到最终的预测结果。

相关推荐
归去_来兮3 小时前
深度学习模型在C++平台的部署
c++·深度学习·模型部署
Danceful_YJ7 小时前
4.权重衰减(weight decay)
python·深度学习·机器学习
我爱一条柴ya14 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
慕婉030714 小时前
深度学习概述
人工智能·深度学习
198914 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
神经星星14 小时前
新加坡国立大学基于多维度EHR数据实现细粒度患者队列建模,住院时间预测准确率提升16.3%
人工智能·深度学习·机器学习
TY-202514 小时前
深度学习——神经网络1
人工智能·深度学习·神经网络
198914 小时前
【零基础学AI】第31讲:目标检测 - YOLO算法
人工智能·rnn·yolo·目标检测·tensorflow·lstm
cver12315 小时前
CSGO 训练数据集介绍-2,427 张图片 AI 游戏助手 游戏数据分析
人工智能·深度学习·yolo·目标检测·游戏·计算机视觉
FreeBuf_15 小时前
新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
人工智能·深度学习·bert