常见回归损失函数详解:L1 Loss, L2 Loss, Huber Loss

误差损失函数比较

L1 损失函数

L1 损失函数又称为绝对误差损失,其形式为 loss(x) = |x|,即预测值与真实值之间差值的绝对值。该函数对异常值具有鲁棒性,梯度恒定不易爆炸,但由于不可导点和不连续导数,可能导致优化过程中收敛速度变慢。

L2 损失函数

L2 损失函数也被称为均方误差损失,其形式为 loss(x) = x²。L2 损失对小误差敏感,能有效惩罚较大的偏差,是神经网络中常用的回归损失函数。然而,L2 损失对异常值非常敏感,可能使得模型偏向这些异常样本。

Huber 损失函数

Huber 损失结合了 L1 和 L2 的优点。其形式为:

  • |x| ≤ δ 时,loss(x) = 0.5 * x²
  • |x| > δ 时,loss(x) = δ * (|x| - 0.5 * δ)

Huber 损失在误差小的情况下与 L2 相同,对结果平滑;在误差大的情况下表现为 L1,提升了对异常值的鲁棒性。

可视化对比

下图展示了 L1 损失、L2 损失以及 Huber 损失三者在误差不同取值下的对比情况:

L1 损失(绝对误差):对异常值鲁棒,梯度恒定,可能导致模型收敛较慢。

L2 损失(平方误差):对小误差敏感,有助于平滑优化,但容易受异常值影响。

Huber 损失:结合了 L1 和 L2 的优点,小误差时像 L2,大误差时像 L1,更平稳且对异常值鲁棒。

相关推荐
小爷毛毛(卓寿杰)3 分钟前
深入解读Qwen3技术报告(三):深入剖析Qwen3模型架构
人工智能·深度学习·语言模型·自然语言处理·架构
YuSun_WK35 分钟前
A-Teacher: Asymmetric Network for 3D Semi-Supervised Object Detection
人工智能·目标检测·3d
SuperW1 小时前
音频AAC编码与RV1126的AENC模块的讲解
人工智能·音视频·pcm
Panesle1 小时前
开源轻量级语音合成和语音克隆模型:OuteTTS-1.0-0.6B
人工智能·语言模型·自然语言处理·开源·大模型·语音识别
亚里随笔2 小时前
多场景游戏AI新突破!Divide-Fuse-Conquer如何激发大模型“顿悟时刻“?
人工智能·深度学习·游戏·llm·agent
bulucc2 小时前
免费AI工具整理
人工智能
在人间负债^2 小时前
飞书知识问答深度体验:企业AI应用落地的典范产品
人工智能·飞书
商业智慧经2 小时前
物联网代理暴利逻辑拆解:格行随身WiFi三网切换技术实战分析
人工智能·物联网
SuperW2 小时前
RV1126 音频AI模块的详解
人工智能·音视频
EasyDSS2 小时前
EasyRTC音视频实时通话WebP2P技术赋能的全场景实时通信解决方案
人工智能·音视频