TIGER - 一个轻量高效的语音分离模型,支持人声伴奏分离、音频说话人分离等 支持50系显卡 本地一键整合包下载

TIGER 是一种轻量级语音分离模型,通过频段分割、多尺度及全频帧建模有效提取关键声学特征。该项目由来自清华大学主导研发,通过频率带分割、多尺度以及全频率帧建模的方式,有效地提取关键声学特征,从而实现高效的语音分离。

TIGER 模型大小不到20M,即使CPU也可以流畅运行,且支持人声伴奏分离(音频文件中分离人声和伴奏)、音频说话人分离(从多个说话人音频中分离出每个说话人的声音)、视频降噪以及视频语音分离等功能。

应用领域 ‌

语音通信‌:在多人语音通信场景中,TIGER可以有效分离出各个说话人的声音,提高通话质量和清晰度。 ‌

智能语音识别‌:在智能家居、车载系统等智能语音识别应用中,TIGER能够帮助系统更准确地识别用户的指令,提升用户体验。 ‌

音频处理软件‌:作为音频处理软件中的一个组件,TIGER可以用于音频编辑、混音等场景,实现音频信号的精细分离和处理。 ‌

远程教育和会议‌:在远程教育和在线会议中,TIGER能够分离出各个参与者的声音,减少背景噪音和干扰,提高沟通效率。

使用教程: (CPU可流畅运行。建议N卡,显存4G起。支持50系显卡,基于CUDA12.8)

上传需要分离的音视频素材,提交即可。

注. 适用大部分音视频素材分离,但不保证所有复杂的场景都有好的效果。支持自定义素材模型训练

下载地址:点此下载

相关推荐
woshihonghonga3 小时前
Jupyter Notebook模块导入错误排查
人工智能
ting_zh4 小时前
PyTorch、TensorFlow、JAX 简介
人工智能·pytorch·tensorflow
数据与人工智能律师5 小时前
AI的法治迷宫:技术层、模型层、应用层的法律痛点
大数据·网络·人工智能·云计算·区块链
椒颜皮皮虾྅5 小时前
【DeploySharp 】基于DeploySharp 的深度学习模型部署测试平台:安装和使用流程
人工智能·深度学习·开源·c#·openvino
迈火5 小时前
PuLID_ComfyUI:ComfyUI中的图像生成强化插件
开发语言·人工智能·python·深度学习·计算机视觉·stable diffusion·语音识别
AI新兵7 小时前
AI大事记10:从对抗到创造——生成对抗网络 (GANs)
人工智能·神经网络·生成对抗网络
却道天凉_好个秋7 小时前
深度学习(十五):Dropout
人工智能·深度学习·dropout
你好~每一天7 小时前
2025 中小企业 AI 转型:核心岗技能 “怎么证、怎么用”?
人工智能·百度·数据挖掘·数据分析·职业·转行
飞哥数智坊8 小时前
3B参数差点干翻32B模型,Qwen3 Next 是如何做到的?
人工智能
人工智能技术派8 小时前
Whisper推理源码解读
人工智能·语言模型·whisper·语音识别