TIGER - 一个轻量高效的语音分离模型,支持人声伴奏分离、音频说话人分离等 支持50系显卡 本地一键整合包下载

TIGER 是一种轻量级语音分离模型,通过频段分割、多尺度及全频帧建模有效提取关键声学特征。该项目由来自清华大学主导研发,通过频率带分割、多尺度以及全频率帧建模的方式,有效地提取关键声学特征,从而实现高效的语音分离。

TIGER 模型大小不到20M,即使CPU也可以流畅运行,且支持人声伴奏分离(音频文件中分离人声和伴奏)、音频说话人分离(从多个说话人音频中分离出每个说话人的声音)、视频降噪以及视频语音分离等功能。

应用领域 ‌

语音通信‌:在多人语音通信场景中,TIGER可以有效分离出各个说话人的声音,提高通话质量和清晰度。 ‌

智能语音识别‌:在智能家居、车载系统等智能语音识别应用中,TIGER能够帮助系统更准确地识别用户的指令,提升用户体验。 ‌

音频处理软件‌:作为音频处理软件中的一个组件,TIGER可以用于音频编辑、混音等场景,实现音频信号的精细分离和处理。 ‌

远程教育和会议‌:在远程教育和在线会议中,TIGER能够分离出各个参与者的声音,减少背景噪音和干扰,提高沟通效率。

使用教程: (CPU可流畅运行。建议N卡,显存4G起。支持50系显卡,基于CUDA12.8)

上传需要分离的音视频素材,提交即可。

注. 适用大部分音视频素材分离,但不保证所有复杂的场景都有好的效果。支持自定义素材模型训练

下载地址:点此下载

相关推荐
东风西巷11 分钟前
NealFun安卓版:创意无限,娱乐至上
android·人工智能·智能手机·娱乐·软件需求
肥猪猪爸1 小时前
BP神经网络对时序数据进行分类
人工智能·深度学习·神经网络·算法·机器学习·分类·时序数据
Keep learning!1 小时前
深度学习入门代码详细注释-ResNet18分类蚂蚁蜜蜂
人工智能·深度学习·分类
Liudef062 小时前
神经辐射场 (NeRF):重构三维世界的AI新视角
人工智能·重构
音视频牛哥3 小时前
打造实时AI视觉系统:OpenCV结合RTSP|RTMP播放器的工程落地方案
人工智能·opencv·计算机视觉·大牛直播sdk·rtsp播放器·rtmp播放器·android rtmp
归去_来兮4 小时前
生成式对抗网络(GAN)模型原理概述
人工智能·深度学习·生成对抗网络
在努力的韩小豪4 小时前
如何从0开始构建自己的第一个AI应用?(Prompt工程、Agent自定义、Tuning)
人工智能·python·llm·prompt·agent·ai应用·mcp
云卓SKYDROID4 小时前
无人机环境感知系统运行与技术难点!
人工智能·计算机视觉·目标跟踪·无人机·科普·高科技·云卓科技
网安INF5 小时前
深度学习中的 Seq2Seq 模型与注意力机制
人工智能·深度学习·神经网络·注意力机制·seq2seq
火山引擎开发者社区5 小时前
ByteBrain x 清华 VLDB25|时序多模态大语言模型 ChatTS
人工智能·语言模型·自然语言处理