Nature图形解析与绘制—热图的绘制及深入解析

热图( Heatmap **)**是一种通过颜色编码的二维可视化图表,用不同颜色或色阶的区块直观展示数据的分布、密度或数值大小。

热图的原理:

(1)颜色映射:将数据值映射到颜色梯度(如冷色代表低值,暖色代表高值)。

(2)矩阵结构:通常以网格形式呈现,每个单元格对应一个数据点。

(3)直观对比:通过颜色深浅快速识别数据中的"热点"(高值区)和"冷点"(低值区)。

其类型主要分以下:

本期教程以2022年发表于Nature communications的一篇文章的图形为例,深入分析文章中热图及使用Origin复现Nature同款热图。

Nature 图形解析

原文中使用热图展示了在三种不同细胞系(SKBR3、BT474、AU565)中,亲本细胞和抗性细胞中8个m6A写入/擦除蛋白的表达水平比较,采用Log2倍数变化(Log2FC)来表示基因表达差异。

热图拆解分析:

(1)行表示8个m6A调控因子的表达水平:METTL3、METTL14、METTL16、RBM15、VIRMA、WTAP、ALKBH5和FTO。

(2)列展示三种细胞系(SKBR3、BT474、AU565),每种细胞系都比较了抗性细胞(右侧)和亲本细胞(左侧)。

颜色刻度:颜色代表表达的倍数变化:红色表示抗性细胞中表达上调(高的正Log2FC)。蓝色表示抗性细胞中表达下调(低的负的Log2FC)。白色/浅色表示没有显著变化(接近0的Log2FC)。

从热图可得出结论:

(1)METTL14在抗性细胞中有显著的下调,尤其在SKBR3、BT474和AU565细胞系中(呈蓝色)。

(2)METTL3在SKBR3和AU565中有所下调,不过下调程度不如METTL14明显。但在BT474中上调。

(3)其他基因如WTAP和FTO在某些细胞系中表现出不同的表达变化,有的上调,有的下调。

这些数据表明,m6A写入/擦除因子的表达在药物抗性中可能存在差异,可能与单抗耐药性的发展相关。

Origin 复现热图

1.打开Origin软件,将数据导入到软件中,数据格式如下图所示:

2.选中所有的数据,点击绘图---等高线图---热图;

3.在跳出的对话框,直接点击确定即可;

4.绘制出来的图形如下图所示,接着需要对其进一步细节美化;

5.双击图形,在颜色映射对话框下,点击填充,点击加载调色板,选选择自己喜欢的颜色;

6.点击下轴,在跳出的浮动工具,勾选显示对称轴,取消勾选标签,轴选择无;点击上轴,在跳出的浮动工具,轴朝向对外,勾选标签;

7.接着对其进行其它细节美化,其中包括删除坐标轴标题,添加字体"Resistant vs Parent",调整上轴坐标轴标签的旋转角度等,其效果图如图所示:

8.接着调整热图的宽度,点击图形,选择Layer1,在大小对话框下,缩小宽度;

9.接着对其它细节美化,最终效果图如下图所示:

以上就是Origin复现Nature热图的基本步骤,及对热图的深入解析,希望本次教程能有助于大家更加清晰地了解热图。

阅读Nature,模仿Nature,发表Nature!

------ END ------

相关推荐
0x2112 小时前
[论文阅读]AttnTrace: Attention-based Context Traceback for Long-Context LLMs
论文阅读
李加号pluuuus2 小时前
【论文阅读】Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generatio
论文阅读
蓝海星梦3 小时前
Chain‑of‑Thought 推理链评估全解析:从参考方法到无参考指标
论文阅读·人工智能·自然语言处理·cot
有Li3 小时前
D-EDL:用于鲁棒医学分布外检测的差异化证据深度学习|文献速递-医疗影像分割与目标检测最新技术
论文阅读·文献·医学生
HollowKnightZ19 小时前
论文阅读笔记:Class-Incremental Learning: A Survey
论文阅读·笔记
Eastmount1 天前
[论文阅读] (45)C&S24 AISL: 基于攻击意图驱动与序列学习方法的APT攻击检测
论文阅读·系统安全·溯源图·攻击意图·apt攻击检测
小明_GLC1 天前
ITransformer: Inverted Transformers Are Effective for Time Series Forecasting
论文阅读
依夏c1 天前
【论文笔记•(多智能体)】Ask Patients with Patience
论文阅读
明明真系叻1 天前
2025.12.21论文阅读
论文阅读·量子计算
m0_650108241 天前
DSGN:基于深度立体几何网络的 3D 目标检测革新
论文阅读·3d目标检测·立体视觉·3d几何体积表示·端到端联合优化·dsgn