Leetcode 3562. Maximum Profit from Trading Stocks with Discounts

  • [Leetcode 3562. Maximum Profit from Trading Stocks with Discounts](#Leetcode 3562. Maximum Profit from Trading Stocks with Discounts)
    • [1. 解题思路](#1. 解题思路)
    • [2. 代码实现](#2. 代码实现)

1. 解题思路

这一题没有搞定,思路上整体走偏了,看了一下别人的解答,结合deepseek的回答看了半天,终于是搞明白了里面的道道,也是醉了......

这一题我自己的思路就是一个遍历,分别考察每一个用户买与不买的情况下budget的变化以及对其下属员工price的变动,但是遇到了超时的问题。

然后deepseek给到的解答是视为一个背包问题,即不是考察每个员工买不不买的情况,而是考察给每一个员工及其下属员工分配多少的预算,然后看其最大能获得多大的利润。即,给到的最终的动态规划的数组为dp[uid][status][budget],其中,uid表示用户id;status表示其父节点的购买状态,即直属上司是否有购买行为;budget表示给该用户及其下属所有员工分配的budget;然后dp[uid][status][budget]整体表示当uid用户的直属上司的购买状态为status时,给他及其下属所有员工分配budget预算时,能够获得的最大的profit。

由此一来,我们就可以使用动态规划进行处理了。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def maxProfit(self, n: int, present: List[int], future: List[int], hierarchy: List[List[int]], budget: int) -> int:
        tree = defaultdict(list)
        for u, v in hierarchy:
            tree[u - 1].append(v - 1)

        @lru_cache(None)
        def dp(u):
            '''
            input: u : int -> 0-based user id
            output: 
              - dp0: [int] * (budget+1) -> max profit for each budget if parent node was not bought
              - dp1: [int] * (budget+1) -> max profit for each budget if parent node was bought
            '''
            child_dp = [dp(v) for v in tree[u]]
            dp0 = [0] * (budget+1) # parent not buy
            dp1 = [0] * (budget+1) # parent buy
            for parent_bought, max_profits in [(0, dp0), (1, dp1)]:
                cost = present[u] if parent_bought == 0 else present[u] // 2
                profit = future[u] - cost
                
                dpA = [0] + [-math.inf] * (budget) # u not buy
                dpB = [-math.inf] * (budget+1) # u buy
                if cost <= budget:
                    dpB[cost] = profit
                for case0, case1 in child_dp:
                    new_dpA = [-math.inf] * (budget+1) # u not buy
                    for bgt in range(budget+1):
                        if dpA[bgt] == -math.inf:
                            continue
                        for k in range(budget-bgt+1):
                            if case0[k] == -math.inf:
                                continue
                            new_dpA[bgt+k] = max(new_dpA[bgt+k], dpA[bgt] + case0[k])
                    dpA = new_dpA
                    
                    new_dpB = [-math.inf] * (budget+1) # u buy
                    for bgt in range(budget+1):
                        if dpB[bgt] == -math.inf:
                            continue
                        for k in range(budget-bgt+1):
                            if case1[k] == -math.inf:
                                continue
                            new_dpB[bgt+k] = max(new_dpB[bgt+k], dpB[bgt] + case1[k])
                    dpB = new_dpB
                    
                for bgt in range(budget+1):
                    max_profits[bgt] = max(dpA[bgt], dpB[bgt])
                    
            return dp0, dp1
                    
                
        
        max_profits, _ = dp(0)
        return max(max_profits)

提交代码评测得到:耗时2362ms,占用内存22.8MB。

相关推荐
豆沙沙包?2 天前
2025年- H82-Lc190--322.零钱兑换(动态规划)--Java版
java·算法·动态规划
小皮侠3 天前
【算法篇】逐步理解动态规划模型7(两个数组dp问题)
java·开发语言·git·算法·leetcode·职场和发展·动态规划
lboverfys4 天前
动态规划之爬楼梯(二)
算法·动态规划
小皮侠4 天前
【算法篇】逐步理解动态规划模型6(回文串问题)
java·开发语言·算法·动态规划
手握风云-6 天前
动态规划算法的欢乐密码(二):路径问题
算法·动态规划
GEEK零零七6 天前
Leetcode 3299. 连续子序列的和
算法·leetcode·动态规划
智慧城市20306 天前
96页PPT华为销售战略规划市场洞察品牌策略
动态规划·设计规范
青山是哪个青山7 天前
动态规划DP
算法·动态规划
黑色的山岗在沉睡8 天前
P1216 [IOI 1994] 数字三角形 Number Triangles
算法·动态规划
hie9889410 天前
基于matlab策略迭代和值迭代法的动态规划
算法·动态规划