DB-GPT扩展自定义Agent配置说明

简介

文章主要介绍了如何扩展一个自定义Agent,这里是用官方提供的总结摘要的Agent做了个示例,先给大家看下显示效果

代码目录

博主将代码放在core目录了,后续经过对源码的解读感觉放在dbgpt_serve.agent.agents.expand目录下可能更合适,大家自行把控即可

代码详情

summarizer_action.py

from typing import Optional

from pydantic import BaseModel, Field

from dbgpt.vis import Vis

from dbgpt.agent import Action, ActionOutput, AgentResource, ResourceType

from dbgpt.agent.util import cmp_string_equal

NOT_RELATED_MESSAGE = "Did not find the information you want."

The parameter object that the Action that the current Agent needs to execute needs to output.

class SummaryActionInput(BaseModel):

summary: str = Field(

...,

description="The summary content",

)

class SummaryAction(Action[SummaryActionInput]):

def init(self, **kwargs):

super().init(**kwargs)

@property

def resource_need(self) -> Optional[ResourceType]:

The resource type that the current Agent needs to use

here we do not need to use resources, just return None

return None

@property

def render_protocol(self) -> Optional[Vis]:

The visualization rendering protocol that the current Agent needs to use

here we do not need to use visualization rendering, just return None

return None

@property

def out_model_type(self):

return SummaryActionInput

async def run(

self,

ai_message: str,

resource: Optional[AgentResource] = None,

rely_action_out: Optional[ActionOutput] = None,

need_vis_render: bool = True,

**kwargs,

) -> ActionOutput:

"""Perform the action.

The entry point for actual execution of Action. Action execution will be

automatically initiated after model inference.

"""

try:

Parse the input message

param: SummaryActionInput = self._input_convert(ai_message, SummaryActionInput)

except Exception:

return ActionOutput(

is_exe_success=False,

content="The requested correctly structured answer could not be found, "

f"ai message: {ai_message}",

)

Check if the summary content is not related to user questions

if param.summary and cmp_string_equal(

param.summary,

NOT_RELATED_MESSAGE,

ignore_case=True,

ignore_punctuation=True,

ignore_whitespace=True,

):

return ActionOutput(

is_exe_success=False,

content="the provided text content is not related to user questions at all."

f"ai message: {ai_message}",

)

else:

return ActionOutput(

is_exe_success=True,

content=param.summary,

)

summarizer_agent.py

from typing import Optional

from pydantic import BaseModel, Field

from dbgpt.vis import Vis

from dbgpt.agent import Action, ActionOutput, AgentResource, ResourceType

from dbgpt.agent.util import cmp_string_equal

NOT_RELATED_MESSAGE = "Did not find the information you want."

The parameter object that the Action that the current Agent needs to execute needs to output.

class SummaryActionInput(BaseModel):

summary: str = Field(

...,

description="The summary content",

)

class SummaryAction(Action[SummaryActionInput]):

def init(self, **kwargs):

super().init(**kwargs)

@property

def resource_need(self) -> Optional[ResourceType]:

The resource type that the current Agent needs to use

here we do not need to use resources, just return None

return None

@property

def render_protocol(self) -> Optional[Vis]:

The visualization rendering protocol that the current Agent needs to use

here we do not need to use visualization rendering, just return None

return None

@property

def out_model_type(self):

return SummaryActionInput

async def run(

self,

ai_message: str,

resource: Optional[AgentResource] = None,

rely_action_out: Optional[ActionOutput] = None,

need_vis_render: bool = True,

**kwargs,

) -> ActionOutput:

"""Perform the action.

The entry point for actual execution of Action. Action execution will be

automatically initiated after model inference.

"""

try:

Parse the input message

param: SummaryActionInput = self._input_convert(ai_message, SummaryActionInput)

except Exception:

return ActionOutput(

is_exe_success=False,

content="The requested correctly structured answer could not be found, "

f"ai message: {ai_message}",

)

Check if the summary content is not related to user questions

if param.summary and cmp_string_equal(

param.summary,

NOT_RELATED_MESSAGE,

ignore_case=True,

ignore_punctuation=True,

ignore_whitespace=True,

):

return ActionOutput(

is_exe_success=False,

content="the provided text content is not related to user questions at all."

f"ai message: {ai_message}",

)

else:

return ActionOutput(

is_exe_success=True,

content=param.summary,

)

这样重启项目就能看到自定义的agent了

相关推荐
不良人天码星4 分钟前
谈谈redis的持久化
数据库·redis·缓存
@sinner14 分钟前
《扫雷:病毒蔓延》- 颠覆传统的动态扫雷游戏
python·游戏·pygame
愈努力俞幸运14 分钟前
python 列表浅拷贝 深拷贝
python
测试老哥26 分钟前
测试用例之正交试验法、功能图法
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
qq_479875431 小时前
TimerFd & Epoll
java·服务器·数据库
岁岁岁平安1 小时前
python基本数据类型、字典、 集合、条件与循环控制、函数(3)
python·学习·集合·函数·字典·python3
绵绵细雨中的乡音1 小时前
MySQL 数据库核心操作全解析:从创建到备份与连接管理
数据库·oracle
wan了个蛋1 小时前
使用python脚本大批量自动化处理图片上的ai水印
python
好家伙VCC2 小时前
**TensorFlow:发散创新的深度学习框架探索**随着人工智
java·人工智能·python·深度学习·tensorflow
kebijuelun2 小时前
OpenAI 最新开源模型 gpt-oss 架构与训练解析
人工智能·gpt·语言模型·架构