DB-GPT扩展自定义Agent配置说明

简介

文章主要介绍了如何扩展一个自定义Agent,这里是用官方提供的总结摘要的Agent做了个示例,先给大家看下显示效果

代码目录

博主将代码放在core目录了,后续经过对源码的解读感觉放在dbgpt_serve.agent.agents.expand目录下可能更合适,大家自行把控即可

代码详情

summarizer_action.py

from typing import Optional

from pydantic import BaseModel, Field

from dbgpt.vis import Vis

from dbgpt.agent import Action, ActionOutput, AgentResource, ResourceType

from dbgpt.agent.util import cmp_string_equal

NOT_RELATED_MESSAGE = "Did not find the information you want."

The parameter object that the Action that the current Agent needs to execute needs to output.

class SummaryActionInput(BaseModel):

summary: str = Field(

...,

description="The summary content",

)

class SummaryAction(Action[SummaryActionInput]):

def init(self, **kwargs):

super().init(**kwargs)

@property

def resource_need(self) -> Optional[ResourceType]:

The resource type that the current Agent needs to use

here we do not need to use resources, just return None

return None

@property

def render_protocol(self) -> Optional[Vis]:

The visualization rendering protocol that the current Agent needs to use

here we do not need to use visualization rendering, just return None

return None

@property

def out_model_type(self):

return SummaryActionInput

async def run(

self,

ai_message: str,

resource: Optional[AgentResource] = None,

rely_action_out: Optional[ActionOutput] = None,

need_vis_render: bool = True,

**kwargs,

) -> ActionOutput:

"""Perform the action.

The entry point for actual execution of Action. Action execution will be

automatically initiated after model inference.

"""

try:

Parse the input message

param: SummaryActionInput = self._input_convert(ai_message, SummaryActionInput)

except Exception:

return ActionOutput(

is_exe_success=False,

content="The requested correctly structured answer could not be found, "

f"ai message: {ai_message}",

)

Check if the summary content is not related to user questions

if param.summary and cmp_string_equal(

param.summary,

NOT_RELATED_MESSAGE,

ignore_case=True,

ignore_punctuation=True,

ignore_whitespace=True,

):

return ActionOutput(

is_exe_success=False,

content="the provided text content is not related to user questions at all."

f"ai message: {ai_message}",

)

else:

return ActionOutput(

is_exe_success=True,

content=param.summary,

)

summarizer_agent.py

from typing import Optional

from pydantic import BaseModel, Field

from dbgpt.vis import Vis

from dbgpt.agent import Action, ActionOutput, AgentResource, ResourceType

from dbgpt.agent.util import cmp_string_equal

NOT_RELATED_MESSAGE = "Did not find the information you want."

The parameter object that the Action that the current Agent needs to execute needs to output.

class SummaryActionInput(BaseModel):

summary: str = Field(

...,

description="The summary content",

)

class SummaryAction(Action[SummaryActionInput]):

def init(self, **kwargs):

super().init(**kwargs)

@property

def resource_need(self) -> Optional[ResourceType]:

The resource type that the current Agent needs to use

here we do not need to use resources, just return None

return None

@property

def render_protocol(self) -> Optional[Vis]:

The visualization rendering protocol that the current Agent needs to use

here we do not need to use visualization rendering, just return None

return None

@property

def out_model_type(self):

return SummaryActionInput

async def run(

self,

ai_message: str,

resource: Optional[AgentResource] = None,

rely_action_out: Optional[ActionOutput] = None,

need_vis_render: bool = True,

**kwargs,

) -> ActionOutput:

"""Perform the action.

The entry point for actual execution of Action. Action execution will be

automatically initiated after model inference.

"""

try:

Parse the input message

param: SummaryActionInput = self._input_convert(ai_message, SummaryActionInput)

except Exception:

return ActionOutput(

is_exe_success=False,

content="The requested correctly structured answer could not be found, "

f"ai message: {ai_message}",

)

Check if the summary content is not related to user questions

if param.summary and cmp_string_equal(

param.summary,

NOT_RELATED_MESSAGE,

ignore_case=True,

ignore_punctuation=True,

ignore_whitespace=True,

):

return ActionOutput(

is_exe_success=False,

content="the provided text content is not related to user questions at all."

f"ai message: {ai_message}",

)

else:

return ActionOutput(

is_exe_success=True,

content=param.summary,

)

这样重启项目就能看到自定义的agent了

相关推荐
苦学编程的谢8 分钟前
Redis_8_List
数据库·redis·缓存
apocelipes19 分钟前
POSIX兼容系统上read和write系统调用的行为总结
linux·c语言·c++·python·golang·linux编程
曹天骄24 分钟前
阿里云 DCDN → CDN 无缝切换教程(以 example.com 为例)
数据库·阿里云·云计算
暴风鱼划水30 分钟前
算法题(Python)数组篇 | 6.区间和
python·算法·数组·区间和
Derrick__143 分钟前
Web Js逆向——加密参数定位方法(Hook)
python·js
南汐汐月1 小时前
重生归来,我要成功 Python 高手--day33 决策树
开发语言·python·决策树
lzjava20241 小时前
Spring AI使用知识库增强对话功能
人工智能·python·spring
workflower1 小时前
软件工程-练习
数据库·需求分析·个人开发·极限编程·结对编程
B站_计算机毕业设计之家1 小时前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
Q_Q5110082851 小时前
python+django/flask的校园活动中心场地预约系统
spring boot·python·django·flask·node.js·php