从零实现本地语音识别(FunASR)

FunASR 是达摩院开源的综合性语音处理工具包,提供语音识别(ASR)、语音活动检测(VAD)、标点恢复(PUNC)等全流程功能,支持多种主流模型(如 Paraformer、Whisper、SenseVoice)的推理、微调和部署。

1. funasr安装

sh 复制代码
pip install funasr


2. 模型下载

sh 复制代码
pip install modelscope
modelscope download --model iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch


3. 依赖库安装

pip install torch torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install addict, datasets -i https://pypi.tuna.tsinghua.edu.cn/simple

4. 模式一:使用本地模型

4.1 程序编码(本地模型)

python 复制代码
from funasr import AutoModel

model = AutoModel(
    model="./speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
    disable_update=True,
    device="cpu"  # 或 "cuda" 如果有GPU
)    
res = model.inference(input="asr_example.wav")
print("识别结果:", res[0]["text"])

4.2. 运行测试(本地模型)

5. 模式二:运行时自动下载模型

5.1 程序编码(运行时下载模型)

python 复制代码
from funasr import AutoModel

model = AutoModel(
    model="paraformer-zh",
    disable_update=True,
    device="cpu"  # 或 "cuda" 如果有GPU
)    
res = model.inference(input="asr_example.wav")
print("识别结果:", res[0]["text"])

5.2 运行测试(运行时下载模型)

下载后,第二次执行则不再下载,但程序启动会检查。

6. 模式三:指定vad等子模型

6.1 程序编码(指定子模型)

python 复制代码
from funasr import AutoModel

model = AutoModel(
    model="paraformer-zh",
    model_revision="v2.0.4",
    vad_model="fsmn-vad",
    punc_model="ct-punc",
    disable_update=True,
    device="cpu"  # 或 "cuda" 如果有GPU
)    
res = model.inference(input="asr_example.wav")
print("识别结果:", res[0]["text"])

6.2 运行测试(指定子模型)

7. 模式四:使用generate

7.1 程序编码(使用generate)

python 复制代码
from funasr import AutoModel
import soundfile as sf

model = AutoModel(
    model="paraformer-zh",
    model_revision="v2.0.4",
    vad_model="fsmn-vad",
    punc_model="ct-punc",
    disable_update=True,
    device="cpu"  # 或 "cuda" 如果有GPU
)    
waveform, _ = sf.read("asr_example.wav")
    
result = model.generate(input=waveform)
print("识别结果:", result[0]["text"])

7.2 运行测试(使用generate)

第二次运行不会下载模型。

sh 复制代码
# 创建虚拟环境
python -m venv sensevoice_env
source sensevoice_env/bin/activate  # Linux/macOS
sensevoice_env\Scripts\activate     # Windows

# 安装 SenseVoice 依赖
pip install torch torchaudio numpy
相关推荐
金井PRATHAMA2 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh2 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
CiLerLinux4 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
七芒星20235 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
Learn Beyond Limits6 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
ACERT3336 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
C嘎嘎嵌入式开发6 小时前
(一) 机器学习之深度神经网络
人工智能·神经网络·dnn
Aaplloo6 小时前
【无标题】
人工智能·算法·机器学习
大模型任我行6 小时前
复旦:LLM隐式推理SIM-CoT
人工智能·语言模型·自然语言处理·论文笔记
tomlone7 小时前
AI大模型核心概念
人工智能