pycharm debug的时候无法debug到指定的位置就停住不动了

报错大致是这样的,但是直接run没有问题,debug就停住不动了

Traceback (most recent call last):

File "/home/mapengsen/.pycharm_helpers/pydev/_pydevd_bundle/pydevd_comm.py", line 467, in start_client

s.connect((host, port))

TimeoutError: timed out

Traceback (most recent call last):

File "<frozen importlib._bootstrap>", line 1027, in _find_and_load

File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked

14:30:48.928250\] \[14:30:48.928492\] \[14:30:48.928599\] \[14:30:48.950877\] \[14:30:48.951222\] \[14:30:48.951351\] File "\", line 688, in _load_unlocked File "\", line 883, in exec_module File "\", line 241, in _call_with_frames_removed Could not connect to 127.0.0.1: 56945 Traceback (most recent call last): File "/home/mapengsen/.pycharm_helpers/pydev/_pydevd_bundle/pydevd_comm.py", line 467, in start_client s.connect((host, port)) TimeoutError: timed out File "/home/mapengsen/anaconda3/envs/MDT2/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 26, in \ Traceback (most recent call last): File "\", line 1027, in _find_and_load File "\", line 1006, in _find_and_load_unlocked File "\", line 688, in _load_unlocked File "\", line 883, in exec_module from torch._inductor.codecache import code_hash, CompiledFxGraph File "/home/mapengsen/anaconda3/envs/MDT2/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1424, in \ File "\", line 241, in _call_with_frames_removed File "/home/mapengsen/anaconda3/envs/MDT2/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 26, in \ from torch._inductor.codecache import code_hash, CompiledFxGraph File "/home/mapengsen/anaconda3/envs/MDT2/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1424, in \ AsyncCompile.warm_pool()AsyncCompile.warm_pool() File "/home/mapengsen/anaconda3/envs/MDT2/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1363, in warm_pool File "/home/mapengsen/anaconda3/envs/MDT2/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1363, in warm_pool pool._adjust_process_count() File "/home/mapengsen/anaconda3/envs/MDT2/lib/python3.10/concurrent/futures/process.py", line 697, in _adjust_process_count pool._adjust_process_count() File "/home/mapengsen/anaconda3/envs/MDT2/lib/python3.10/concurrent/futures/process.py", line 697, in _adjust_process_count Could not connect to 127.0.0.1: 56945

后来才发现是自己 import 自己定义的datasets的时候出现了错误,因为我是在自己定义的datasets中进行了测试,但是里面有错误,然后我还在主程序中import了这个datasets,所以一直停住不动。把dataset报错的地方删除就行,只留方法部分:

def collate_fn_paired_skip_invalid(batch):

if len(batch[0]) == 5: # 单任务情况 (添加了task_id)

valid_batch_items = [item for item in batch if item[0] is not None and item[2] is not None]

if not valid_batch_items:

return torch.empty(0), torch.empty(0, 0), torch.empty(0), torch.empty(0, 0), torch.empty(0, dtype=torch.long)

return torch.utils.data.dataloader.default_collate(valid_batch_items)

else: # 多任务情况 (7个元素,添加了task_id)

valid_batch_items = [item for item in batch if item[0] is not None and item[2] is not None and item[4] is not None]

if not valid_batch_items:

return torch.empty(0), torch.empty(0, 0), torch.empty(0), torch.empty(0, 0), torch.empty(0), torch.empty(0, 0), torch.empty(0, dtype=torch.long)

return torch.utils.data.dataloader.default_collate(valid_batch_items)

删除下面的,以免有错误

# --- 主训练循环 ---

trained_models_per_task = {}

# 假设您在这里定义了 all_task_names

all_task_names = [['A_bioavailability_ma'], ['A_hia_hou'], ['A_bioavailability_ma', 'A_hia_hou']]

for current_task_names in all_task_names:

task_key = '+'.join(current_task_names) # 创建任务组合的键名

print(f"\n--- 开始为任务组合: {task_key} 准备数据和模型 (Paired Data) ---")

相关推荐
LaughingZhu23 分钟前
Product Hunt 每日热榜 | 2025-10-03
人工智能·经验分享·搜索引擎·产品运营
Godspeed Zhao30 分钟前
自动驾驶中的传感器技术65——Navigation(2)
人工智能·机器学习·自动驾驶
智能交通技术32 分钟前
iTSTech:智慧物流中自动驾驶、无人机与机器人的协同应用场景分析 2025
人工智能·机器学习·机器人·自动驾驶·无人机
先把态度摆正32 分钟前
自动驾驶决策规划算法(开幕式)
人工智能·机器学习·自动驾驶
风遥~1 小时前
快速了解并使用Matplotlib库
人工智能·python·数据分析·matplotlib
用户5191495848451 小时前
每个JavaScript开发者都应掌握的33个核心概念
人工智能·aigc
看今朝·1 小时前
【软件工程3.0】以UTDD/ATDD的理念深度融入AI生产流程
人工智能·软件工程·软件工程3.0·ai生产过程
IT古董2 小时前
【第五章:计算机视觉-项目实战之图像分割实战】2.图像分割实战:人像抠图-(5)模型训练与测试
人工智能·计算机视觉
qq_314009832 小时前
大模型之用LLaMA-Factory微调Deepseek-r1-8b模型实践
人工智能·语言模型
丁学文武2 小时前
大模型原理与实践:第三章-预训练语言模型详解_第2部分-Encoder-Decoder-T5
人工智能·语言模型·自然语言处理·大模型·t5·encoder-decoder