Spark-Core Project

RDD转换算子总结

RDD转换算子分为Value类型、双Value类型和Key - Value类型。

1 、Value类型

  1. map:对数据逐条映射转换,可改变数据类型或值。如 dataRDD.map(num => num * 2

|---|------------------------------------------------------------|
| |
| | |

运行结果:

2)mapPartitions:以分区为单位处理数据,可过滤数据。与 map 相比,它是批处理,性能高但可能占内存。如 dataRDD.mapPartitions(datas => datas.filter(_ == 2)) 。

运行结果:

|---|------------------------------------------------------------|
| |
| | |

3)mapPartitionsWithIndex:类似 mapPartitions ,处理时可获取分区索引。

4)flatMap:先扁平化数据再映射,会将输入对象映射为集合后连成大集合。如 dataRDD.flatMap(list => list) 。

|---|------------------------------------------------------------|
| |
| | |

运行结果:

5)glom:将分区数据转为内存数组,分区不变。

运行结果:

6)groupBy:按规则分组数据,会打乱重组(shuffle)。

运行结果:

7)filter:按规则筛选数据,可能导致数据倾斜。

|---|------------------------------------------------------------|
| |
| | |

运行结果:

8)sample:按规则抽取数据,有放回(泊松算法)或不放回(伯努利算法)。

运行结果:

9)distinct:去重数据,可指定分区数。

运行结果:

10)coalesce:缩减分区,提高小数据集效率。

|---|------------------------------------------------------------|
| |
| | |

运行结果:

11)repartition:内部执行 coalesce ,默认 shuffle=true ,可改变分区数。

运行结果:

12)sortBy:排序数据,可指定排序规则和分区数。

|---|------------------------------------------------------------|
| |
| | |

运算结果:

2、双Value类型

13)intersection:求两个RDD交集。

|---|------------------------------------------------------------|
| |
| | |

运行结果:

14)union:求并集,重复数据不去重。

|---|------------------------------------------------------------|
| |
| | |

运行结果:

15)subtract:求差集,保留源RDD非重复元素。

|---|------------------------------------------------------------|
| |
| | |

运行结果:

16)zip:将两个RDD元素按位置合并为键值对。

运行结果:

  1. Key - Value类型

17)partitionBy:按指定 Partitioner 重新分区,默认分区器为HashPartitioner 。

运行结果:

18)groupByKey:按 key 分组 value 。

运行结果:

19) reduceByKey:按 key 聚合 value ,可预聚合,性能高。

运行结果:

20)aggregateByKey:分区内和分区间按不同规则计算。

运行结果:

21)foldByKey:分区内和分区间计算规则相同时,是 aggregateByKey 的简化。

运行结果:

22)combineByKey:通用聚集函数,可改变数据结构。

运行结果:

23)sortByKey:按 key 排序, key 需实现 Ordered 接口。

|---|------------------------------------------------------------|
| |
| | |

运行结果:

  1. join:连接两个RDD中相同 key 的元素。

运行结果:

  1. leftOuterJoin:类似SQL左外连接。

运行结果:

  1. cogroup:将相同 key 的元素分组到一个RDD中。

运行结果:

相关推荐
xingkongvv123 小时前
C# 异步编程
java·服务器·开发语言·前端·javascript
XF小冯6 小时前
Drippingblues靶机通关教程
linux·运维·网络
weixin_446260857 小时前
轻松实现浏览器自动化——AI浏览器自动化框架Stagehand
运维·人工智能·自动化
跟我聊天我会闯红灯8 小时前
如何开发一个运行在windows系统服务器上的服务
运维·服务器·windows
ZPC82108 小时前
参数服务器 server and client
服务器·qt
EasyGBS8 小时前
20250808:EasyGBS 对接大华 ICC 平台问题处理
服务器·音视频·技术分享
搬码临时工8 小时前
自己本地搭建的服务器怎么接公网?公网IP直连服务器方法,和只有内网IP直接映射到互联网
服务器·网络·tcp/ip
AI云原生9 小时前
2025最新国内服务器可用docker源仓库地址大全(2025年8月更新)
运维·服务器·docker·云原生·容器·kubernetes·serverless
Clownseven9 小时前
Nginx反向代理教程:配置多个网站并一键开启HTTPS (Certbot)
运维·nginx·https
火龙kess10 小时前
Centos-Stream 10 安装教程(2025版图文教程)
linux·运维·centos