黑河流域30弧秒分辨率月尺度地表水及地下水灌溉量数据集(1981-2013)

  • 时间分辨率:月
  • 空间分辨率:<= 0.01º
  • 共享方式:开放获取
  • 数据大小:573.97 MB
  • 数据时间范围:1981-01-13 --- 2014-01-12
  • 元数据更新时间:2021-04-19

数据集摘要

农业灌溉占人类用水量的80%左右, 是人类水资源管理中最主要的一环,与人类生存和发展息息相关。灌溉也是水循环中重要的一环,大规模灌溉会通过影响蒸散发从而影响水循环,甚至影响局地的气候。灌溉引水取水过度会导致水资源不可持续利用,同时,会减少河道流量和含水层水储量从而危害生态环境。 因此,确定空间和时间上灌溉量的分布和变化,对于研究过去人类水资源利用情况,灌溉对于生态水文过程,环境和气候的影响,以及制定未来灌溉计划至关重要。 通过融合不同数据源的河道引水灌溉量和地下水取水灌溉量,结合陆面模式CLM4.5模拟和遥感反演的蒸散发数据,制作了一套黑河流域1981-2013年月尺度空间分辨率为30弧秒(0.0083度)的时空连续的地表水和地下水灌溉量数据集。 经过验证,该数据集在2000-2013年可信度较高,1981-1999年由于无遥感数据支持且未考虑土体利用变化,可信度较2000-2013年段为低。 文件说明如下: 每月地表水灌溉量文件命名:Monthly_surfacewater_irrigation_1981-2013.nc 每月地下水灌溉量文件命名:Monthly_groundwater_irrigation_1981-2013.nc 数据为netcdf格式。有3个维度,依次为month, lat, lon. 其中month为月份,数值为0-395,代表1981-2013年逐个月份,lat为网格纬度信息,lon为网格经度信息。 灌溉量数据储存在data变量中,单位为m^3/month 为了方便使用,还提供对应的网格面积数据Heihe_area_size.nc,面积数据储存于该文件data变量中,单位为m^2

数据文件命名方式和使用方法

文件命名:每月地表水灌溉量文件命名:Monthly_surfacewater_irrigation_1981-2013.nc、每月地下水灌溉量文件命名:Monthly_groundwater_irrigation_1981-2013.nc 数据读取方式:数据为netcdf栅格格式,有3个维度,依次为month, lat, lon.可以用arcgis或者编程打开

本数据要求的引用方式

数据的引用

谢正辉. (2016). 黑河流域30弧秒分辨率月尺度地表水及地下水灌溉量数据集(1981-2013). 国家青藏高原科学数据中心. https://doi.org/10.11888/Hydro.tpdc.270573. https://cstr.cn/18406.11.Hydro.tpdc.270573.

Xie, Z. (2016). Monthly irrigation dataset (for both surface water and groundwater) with 30 sec spatial resolution over the Heihe River Basin (1981-2013). National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.11888/Hydro.tpdc.270573. https://cstr.cn/18406.11.Hydro.tpdc.270573.

(下载引用: RIS格式 RIS英文格式 Bibtex格式 Bibtex英文格式 )

文章的引用

1、Zeng, Yujin, Xie, Zhenghui, Yu, Yan, Liu, Shuang, Wang, Linying, Zou, Jing, Qin, Peihua, Jia, Binghao. Effects of anthropogenic water regulation and groundwater lateral flow on land processes. Journal of Advances in Modeling Earth Systems, 2016, :n/a-n/a. doi:10.1002/2016MS000646 ( 查看 Bibtex格式 )

2、Yujin Zeng, Zhenghui Xie, Yan Yu, Shuang Liu, Linying Wang, Binghao Jia, Peihua Qin, Yaning Chen. Ecohydrological effects of stream--aquifer water interaction: a case study of the Heihe River basin, northwestern China, 2016. Hydrology and Earth System Sciences, 20, 2333-2352, doi:10.5194/hess-20-2333-2016. ( 查看 Bibtex格式 )

相关推荐
技术程序猿华锋30 分钟前
Void:免费且隐私友好的 AI 编码利器,挑战 Cursor 地位?
c++·人工智能·mfc
奔跑吧邓邓子1 小时前
DeepSeek 赋能自动驾驶仿真测试:解锁高效精准新范式
人工智能·机器学习·自动驾驶·仿真测试·deepseek
深兰科技1 小时前
深兰科技陈海波率队考察南京,加速AI医诊大模型区域落地应用
人工智能·深兰科技·陈海波
Fuliy962 小时前
【自然语言处理】——基于与训练模型的方法【复习篇1】
人工智能·自然语言处理
Lalolander2 小时前
设备制造行业项目管理难点解析,如何有效解决?
大数据·制造·工程项目管理·四算一控·epc·装备制造项目管理
项目管理打工人2 小时前
高端装备制造企业如何选择适配的项目管理系统提升项目执行效率?附选型案例
大数据·人工智能·驱动开发·科技·硬件工程·团队开发·制造
江苏泊苏系统集成有限公司3 小时前
集成电路制造设备防震基座选型指南:为稳定护航-江苏泊苏系统集成有限公司
人工智能·深度学习·目标检测·机器学习·制造·材料工程·精益工程
吹风看太阳3 小时前
机器学习03-色彩空间:RGB、HSV、HLS
人工智能·机器学习
Ronin-Lotus3 小时前
深度学习篇---Pytorch框架下OC-SORT实现
人工智能·pytorch·python·深度学习·oc-sort
雾迟sec3 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow