学习笔记:3个学习AI路上反复看到的概念:RAG,Langchain,Agent

3个学习AI路上反复看到的概念:RAG,Langchain,Agent

关键知识点

知识点1

RAG的能力核心是有效结合了检索和生成两种方法。基本思路是把私有数据进行切片,向量化后通过向量检索进行召回,再作为上下文输入到通用大模型,模型再进行分析和回答。

RAG可以作为LangChain(如果它是一个语言处理工具)的一部分,用于提供更加丰富和准确的语言生成能力

AI Agent可能使用LangChain来处理自然语言的任务,比如理解用户输入和生成响应。

同时,AI Agent也可以利用RAG技术来提高其在特定任务(如问答或对话系统)中的性能,尤其是在需要外部知识来支持决策时。

参考

相关推荐
Hcoco_me几秒前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
2301_7833601316 分钟前
关于RNAseq——从fastq到gene_counts全流程
笔记·学习
OpenCSG34 分钟前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习
阿里云大数据AI技术36 分钟前
漫画说:为什么你的“增量计算”越跑越慢?——90%的实时数仓团队都踩过的坑,藏在这几格漫画里
大数据·人工智能
_李小白40 分钟前
【AlohaMini学习笔记】第三天:AlohaMini相关技术
笔记·学习
Gavin在路上43 分钟前
SpringAIAlibaba之上下文工程与GraphRunnerContext 深度解析(8)
人工智能
我命由我123451 小时前
Photoshop - Photoshop 工具栏(57)模糊工具
学习·ui·职场和发展·求职招聘·职场发展·学习方法·photoshop
yatingliu20191 小时前
将深度学习环境迁移至老旧系统| 个人学习笔记
笔记·深度学习·学习
撬动未来的支点1 小时前
【AI】光速理解YOLO框架
人工智能·yolo·计算机视觉
电商API_180079052471 小时前
批量获取电商商品数据的主流技术方法全解析
大数据·数据库·人工智能·数据分析·网络爬虫