学习笔记:3个学习AI路上反复看到的概念:RAG,Langchain,Agent

3个学习AI路上反复看到的概念:RAG,Langchain,Agent

关键知识点

知识点1

RAG的能力核心是有效结合了检索和生成两种方法。基本思路是把私有数据进行切片,向量化后通过向量检索进行召回,再作为上下文输入到通用大模型,模型再进行分析和回答。

RAG可以作为LangChain(如果它是一个语言处理工具)的一部分,用于提供更加丰富和准确的语言生成能力

AI Agent可能使用LangChain来处理自然语言的任务,比如理解用户输入和生成响应。

同时,AI Agent也可以利用RAG技术来提高其在特定任务(如问答或对话系统)中的性能,尤其是在需要外部知识来支持决策时。

参考

相关推荐
viperrrrrrrrrr72 分钟前
大数据学习(125)-hive数据分析
大数据·学习
Lilith的AI学习日记10 分钟前
【AI面试秘籍】| 第25期:RAG的关键痛点及解决方案深度解析
人工智能·深度学习·机器学习·chatgpt·aigc·llama
中杯可乐多加冰29 分钟前
采用Bright Data+n8n+AI打造自动化新闻助手:每天5分钟实现内容日更
运维·人工智能·自动化·大模型·aigc·n8n
Listennnn43 分钟前
基于 Flickr30k-Entities 数据集 的 Phrase Localization
人工智能
伊克罗德信息科技1 小时前
基于RPA技术的ECRobot企业智能体解决方案,打通企业自动化业务流程的最后一公里
大数据·人工智能
初恋叫萱萱1 小时前
边缘计算场景下的大模型落地:基于 Cherry Studio 的 DeepSeek-R1-0528 本地部署
人工智能·边缘计算
lulinhao1 小时前
VLAN的作用和原理
网络·笔记·vlan
蹦蹦跳跳真可爱5891 小时前
Python----目标检测(《用于精确目标检测和语义分割的丰富特征层次结构》和R-CNN)
人工智能·python·深度学习·神经网络·目标检测·cnn
Steve lu2 小时前
回归任务损失函数对比曲线
人工智能·pytorch·深度学习·神经网络·算法·回归·原力计划
UQI-LIUWJ2 小时前
论文笔记:Towards Explainable Traffic Flow Prediction with Large Language Models
论文阅读·人工智能·语言模型