实验分享|基于sCMOS相机科学成像技术的耐高温航空涂层材料损伤检测实验

1实验背景

航空发动机外壳的耐高温涂层材料在长期高温、高压工况下易产生微小损伤与裂纹,可能导致严重安全隐患。传统光学检测手段受限于分辨率与灵敏度,难以捕捉微米级缺陷,且检测效率低下。

某高校航空材料实验室,采用科学相机对陶瓷涂层损伤进行科学成像实验。

2实验目标

验证sCMOS相机在检测经高温处理后的陶瓷涂层材料表面微损伤如裂纹的有效性和工程实用性。

3实验准备

核心设备,千眼狼Revealer Gloria 4.2 科学相机,2048×2048,6.5μm×6.5μm,1.2e-低读出噪声。

光学平台,50mm C口工业镜头,Revealer科学成像软件。

样本为经高温处理的陶瓷涂层材料试片,表面引入或自然形成损伤区域。

4实验步骤

1)样本预处理,清洁陶瓷表面,标记损伤区域。

2)架设Gloria 4.2科学相机,垂直对准样本表面。

3)打开科学成像分析软件RPC,设置sCMOS相机采集分辨率(2048×2048),Binning模式(1×1),曝光时间(50ms),采样模式(CMS)。

4)通过实时预览功能调整sCMOS相机的焦距和光圈,使样品表面细节清晰成像。

5)工具栏启用伪彩功能,此功能可将图像中微小的灰度差异化转化为显著的颜色差异,增强人眼对低对比度损伤特征如微裂纹、应力痕、微小剥落区的辨识度。

6)连续采集多组图像,记录原始灰度图和伪彩处理图前后对比。另科学成像软件RPC支持定量化分析,基于灰度阈值分割算法,统计损伤面积;支持绘制损伤区域与完好区域的灰度值分布直方图,量化损伤与背景的对比度差异;同时也支持利用图像测量工具,测量微裂纹的长度、宽度等几何参数,精度可达微米级。

5实验数据

第一组样本,经伪彩处理的陶瓷涂层表面图像,清晰可见多条微米级裂纹,及一处微小剥落区域,颜色明显区别于背景,如下图。sCMOS相机捕捉到传统方法易漏检的细长微裂纹和浅表微小剥落坑。

第一组样本

第二组样本高分辨率灰度图(左)与伪彩处理图(右)对比,伪彩图显著提升了低对比度应力集中区域的可见性,预示潜在损伤风险点。通过灰度值分析,可定量区分潜在损伤区域与正常区域的差异,如下图,sCMOS相机伪彩处理功能有助于揭示早期损伤迹象,实现预测性维护。

第二组样本

6实验结论

本次基于科学成像技术的耐高温航空涂层材料损伤实验,展示了Gloria 4.2科学相机在材料损伤检测领域的工程适用性,其高灵敏度与伪彩处理、图像分析能力提升了损伤可视化、定量化检测水平,验证了sCMOS相机在航空材料损伤检测中的高效与可靠。

相关推荐
麻雀无能为力3 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心3 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield3 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域4 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技4 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_15 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
weixin_307779135 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
书玮嘎6 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎6 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊6 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪