TomatoSCI数据分析实战:探索社交媒体成瘾

今天我们尝试对一份社交媒体成瘾的调查数据进行几项简单的分析,看看可以得出哪些有意思的结论?图1A是这份数据的说明,因为篇幅太长只把部分数据贴出来(图1B)。


01 不同性别的成瘾程度会不同吗?

我们使用bootstrap方法对男生女生的成瘾分数进行了求平均,发现女生的平均值为6.515187,置信区间为[6.334350, 6.702478],女生的平均值为6.359707,置信区间为[6.204545 6.519814](图2)。从平均值来看,女生略高于男生,但是由于两者的置信区间存在重合,因此在统计学上认为不同性别的成瘾分数不存在显著的高低差异。这说明可能其实大家都爱玩手机。


02 是什么在影响成瘾程度高低?

我们把问卷中的连续变量作为自变量,社交媒体成瘾程度作为因变量,进行多元线性回归。看看哪些是显著影响成瘾程度的重要因素。结果发现(图3),模型整体拟合度极高(调整后的R²约为0.94),p值小于0.01,说明以上变量能很好地解释成瘾程度的变化。

·睡眠时间(Sleep_Hours_Per_Night)对成瘾程度有显著负向影响,系数约为 -0.21,且p值极小(< 0.001),说明睡得越少,成瘾得分越高。换句话说,睡眠不足的人更容易出现社交媒体成瘾问题。

·心理健康评分(Mental_Health_Score)同样显著且负相关,估计值约为 -0.67,表明心理健康状况越好,成瘾得分越低。心理状态不佳可能增加成瘾风险。

·社交媒体冲突(Conflicts_Over_Social_Media)则与成瘾程度呈显著正相关,估计值约为 0.67,说明经常因社交媒体产生冲突的人,成瘾风险更高。

·年龄和日均使用时长(Avg_Daily_Usage_Hours),并未显著影响成瘾程度,这意味着单纯的使用时间和年龄并非成瘾的关键因素。


03 社交媒体成瘾者的几种"画像"

这部分其实就是聚类,因为我们要追求真实性,所以要把所有变量都纳入分析,但层次聚类和K-mean聚类都是针对连续变量的,因此在这里我们使用了Gower距离 + PAM 聚类的方法,聚类前使用轮廓系数确定聚类簇数(图4A)。结果把所有受访者分为了4个群体(图4B):

类群1:重度依赖型

以年轻本科女生为主,日均使用时间最长(5.64h),多使用Instagram,普遍认为影响学业,精神状态差、冲突多、成瘾程度最高,为典型的高风险群体。

类群2:理性使用者

以年长研究生男性为主,使用时间最短(3.79h),多用 Facebook,学业影响最小,心理状态最佳、成瘾最低,是最健康节制的一群用户。

类群3:适度使用者

与类群1相似的年轻女性群体,但使用时长较短(3.83h)、影响较小、心理状态良好、成瘾程度低,表现出较好的自控力和使用节制。

类群4:隐性高风险者

研究生男性居多,使用时间高(5.44h),以 TikTok 为主,学业受影响,心理状态一般,成瘾程度高,可能为娱乐性或被动沉迷的使用者。


数据无偿分享供练习使用,只求一个小小的关注。

TomatoSCI科研数据分析平台,欢迎大家来访!

相关推荐
水如烟3 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学4 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19824 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮4 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手4 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋4 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-4 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView4 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7774 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云5 小时前
Claude Code:进入dash模式
人工智能