深度学习|pytorch基本运算-hadamard积、点积和矩阵乘法

【1】引言

pytorch对张量的基本运算和线性代数课堂的教学有一些区别,至少存在hadamard积、点积和矩阵乘法三种截然不同的计算方法。

【2】hadamard积

hadamard积是元素对位相乘,用"*"连接张量,代码:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([[1,2,3],
               [3,2,1],
                [0,2,6]])
# hadamard积运算
a=y*z
# 打印
print(a)

代码运行后,按照对位相乘的效果输出:

++图1 hadamard积运算++

【3】点积

点积是元素对位相乘后再求和,用"torch.sum(*)"连接张量,代码:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([[11,2,3],
               [3,12,1],
                [10,2,16]])
# hadamard积运算
a=y*z
# 打印
print(a)
# 点积运算
b=torch.sum(y*z)
# 打印
print(b)

代码运行后,按照先对位相乘、再求和的效果输出:

++图2 点积运算++

【4】矩阵乘法

矩阵乘法是第一个矩阵的第i行与第二个矩阵第j列相乘的效果,用"torch.mm()"连接矩阵,就是大家所熟悉的线性代数中得矩阵乘法,代码:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[11,2,3],
               [1,12,30],
                [10,12,3]])
z=torch.tensor([[11,12,3],
               [3,12,10],
                [10,2,16]])
# hadamard积运算
a=y*z
# 打印
print(a)
# 点积运算
b=torch.sum(y*z)
# 打印
print(b)
# 矩阵乘法
c=torch.mm(y,z)
# 打印
print(c)

代码运行后,按照第一个矩阵的第i行与第二个矩阵第j列相乘的效果输出:

++图3 矩阵乘法运算++

【5】总结

本次学习了pytorch基本运算,包括hadamard积、点积和矩阵乘法:

  • hadamard积是元素对位相乘,用"*"连接张量
  • 点积是元素对位相乘后再求和,用"torch.sum(*)"连接张量
  • 矩阵乘法是第一个矩阵的第i行与第二个矩阵第j列相乘的效果,用"torch.mm()"连接矩阵,就是大家所熟悉的线性代数中得矩阵乘法。
相关推荐
AI街潜水的八角39 分钟前
深度学习图像分类数据集—蘑菇识别分类
人工智能·深度学习·分类
蹦蹦跳跳真可爱5892 小时前
Python----循环神经网络(Transformer ----注意力机制)
人工智能·深度学习·nlp·transformer·循环神经网络
张晓~183399481213 小时前
数字人分身+矩阵系统聚合+碰一碰发视频: 源码搭建-支持OEM
线性代数·矩阵·音视频
千宇宙航7 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco7 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
天水幼麟8 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
天水幼麟10 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
强哥之神14 小时前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算
Green1Leaves14 小时前
pytorch学习-9.多分类问题
人工智能·pytorch·学习
陈敬雷-充电了么-CEO兼CTO15 小时前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer