AI玩游戏的一点尝试(5)—— 多样化的数字识别

前言

AI玩游戏的一点尝试(1)------ 架构设计与初步状态识别

AI玩游戏的一点尝试(2)------ 初探无监督学习与特征可视化

AI玩游戏的一点尝试(3)------ 图片去重

AI玩游戏的一点尝试(4)------ 数字识别

数据采集

养成过程中的训练加值是以+XX的形式表示的,我希望模型可以忽略+号,直接输出数字结果。

之前的数字在屏幕上是常驻显示的,而这种数字不是。这里有两种思路:训练一个模型专门用于判断区域内是否有数字;或者使用现有数字识别模型的全空表示没有数字。先使用现有模型试试看。

和之前一样编辑模板后裁剪区域:

但是这次有不存在数字的数据,即使有数字也有+号干扰ocr识别。

查看大量ocr输出结果后发现,ocr对于数字部分依然可以较为准确的识别,对于+号和噪点会识别为汉字,因此通过提取数字的方式可以较为准确的得到识别结果。

进一步观察结果后发现,score>0.5的结果相对而言比较准确。

python 复制代码
ocr_result = ocr.ocr.ocr_for_single_line(np.array(cropped_img))
# print(ocr_result)
if ocr_result['score'] >= 0.5:
    continue
ocr_text = ocr_result['text']
digit_chars = []
for char in ocr_text:
    if char.isdigit():
        digit_chars.append(char)

if digit_chars:
    digit = int(''.join(digit_chars))
else:
    digit = ""

模型优化

初步训练后的误差较大,于是寻找优化方法。

随后发现不同区域的宽高比并不相同,在考虑保持宽高比进行填充是否比直接拉伸要更好:

python 复制代码
class ResizeWithPadding:
    def __init__(self, target_size, fill=0):
        self.target_height, self.target_width = target_size
        self.fill = fill
    
    def __call__(self, img):
        # 获取原始尺寸
        width, height = img.size
        
        # 计算缩放比例,保持宽高比
        scale = min(self.target_width / width, self.target_height / height)
        
        # 计算新尺寸
        new_width = int(width * scale)
        new_height = int(height * scale)
        
        # resize保持宽高比
        img = F.resize(img, (new_height, new_width))
        
        # 创建目标尺寸的画布并居中放置
        new_img = Image.new(img.mode, (self.target_width, self.target_height), self.fill)
        paste_x = (self.target_width - new_width) // 2
        paste_y = (self.target_height - new_height) // 2
        new_img.paste(img, (paste_x, paste_y))
        
        return new_img

再经过灰度调整,重新计算数据集的均值和标准差:

python 复制代码
def calculate_mean_std_grayscale(dataloader):
    mean = torch.zeros(1)
    std = torch.zeros(1)
    total_images = 0
    logger.info("计算灰度图均值...")
    for images in tqdm(dataloader):
        batch_mean = torch.mean(images, dim=[0, 2, 3])
        mean += batch_mean * images.size(0)
        total_images += images.size(0)
    mean /= total_images
    logger.info("计算灰度图标准差...")
    for images in tqdm(dataloader):
        batch_var = torch.mean((images - mean.view(1, 1, 1, 1)) ** 2, dim=[0, 2, 3])
        std += batch_var * images.size(0)
    std = torch.sqrt(std / total_images)
    return mean, std

根据置信度强化数据集

经过优化后,依然有小部分识别容易出错(比如17混淆、79混淆、38混淆等),观察发现此时结果的置信度通常较低,于是优化脚本在置信度低时进行保存:

python 复制代码
if min_confidence < 0.9:
    filename = f"data/predict_digit/{result['value']}_{timestamp_str}_{min_confidence:.2f}_{attribute}.png"
    img_bgr = cv2.cvtColor(processed_images[attribute], cv2.COLOR_RGB2BGR)
    img_pil = Image.fromarray(img_bgr)
    img_pil.save(filename)

玩一段时间后,打开保存的文件夹人工校对标注后加入数据集重新训练,可以不断优化训练效果。

成果

还有一种数字也一样进行识别和标注,这样数字识别模型就可以较为准确的同时识别三种不同样式的数字了:

下一步

游戏中除了直接显示的数字以外,还有很多进度条、状态等需要辨别,下一步处理这方面的输入。

相关推荐
小陈phd13 分钟前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain
居然JuRan26 分钟前
阿里云多模态大模型岗三面面经
人工智能
THMAIL28 分钟前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
nju_spy29 分钟前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中國龍在廣州1 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
东哥说-MES|从入门到精通1 小时前
Mazak MTF 2025制造未来参观总结
大数据·网络·人工智能·制造·智能制造·数字化
CodeCraft Studio1 小时前
Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能
人工智能·ai·语言模型·llm·.net·智能文档处理·aspose.word
山烛1 小时前
深度学习:CNN 模型训练中的学习率调整(基于 PyTorch)
人工智能·pytorch·python·深度学习·cnn·调整学习率
THMAIL1 小时前
深度学习从入门到精通 - 神经网络核心原理:从生物神经元到数学模型蜕变
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归
七夜zippoe2 小时前
AI+Java 守护你的钱袋子!金融领域的智能风控与极速交易
java·人工智能·金融