刘二大人第2讲-线性模型-带代码以及作业答案

2. 线性模型

2.1 任务介绍

根据时间,预测得分

2.2 步骤

2.2.1 步骤一:模型

随便给一个线性模型,我们使用简化的线性模型(去掉截距只看一元,简单举例)来举例:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> y ^ = w ∗ x \hat{y} = w * x </math>y^=w∗x

2.2.2 步骤二:Loss

目标:找到一个参数w*,使模型的误差最小

在此设定单个样本的Loss函数为:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> L o s s = ( y ^ − y ) 2 = ( x ∗ w − y ) 2 Loss = (\hat{y} - y)^2 = (x*w - y)^2 </math>Loss=(y^−y)2=(x∗w−y)2

整体Loss为MSE(平均平方误差)
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> c o s t = 1 N ∗ ∑ i = 1 N ( y ^ i − y i ) 2 cost = \frac{1}{N} * \sum_{i=1}^{N} (\hat{y}i - yi)^2 </math>cost=N1∗i=1∑N(y^i−yi)2

2.2.3 步骤三:优化

穷举算一下MSE,发现w=2时模型最优

2.3 代码

2.3.1 穷举法

首先介绍通过穷举法找最小Loss

我们通过某些猜想,猜到最小Loss应该出现在w落在0-4区间的情况

我们取样用穷举法

代码如下:

ini 复制代码
import matplotlib as plt
​
# 设置后端为TkAgg
plt.use('TkAgg')
​
import numpy as np
from matplotlib import pyplot as plt
​
# 1. 定义训练数据集
x_data = np.array([1.0, 2.0, 3.0])
y_data = np.array([2.0, 4.0, 6.0])
​
​
# 2. 定义模型
def forward(x):
    return x * w
​
​
# 3. 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)
​
​
# 4.存储遍历的w以及MSE
w_list = []
mse_list = []
​
# 5. 0-4之间以0.1为间隔采样穷举w训练模型
for w in np.arange(0.0, 4.1, 0.1):
    # 计算损失函数
    l_sum = 0
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        # 累加损失
        l_sum = l_sum + l
    # 存储w和mse
    w_list.append(w)
    mse_list.append(l_sum / 3)
​
# 6. 画图查看w与Loss函数的关系
# 尺寸设置
plt.figure(figsize=(10, 5))
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
​
plt.show()
​

注意点:‌zip函数将多个可迭代对象的对应元素组合成元组

2.4 作业

使用有截距的模型来实现以上操作,即猜测的模型为
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> y = w ∗ x + b y = w*x + b </math>y=w∗x+b

答案

通过观察,设定w在0到4之间,b在-2到2之间。

代码如下:

ini 复制代码
import matplotlib
​
# 设置后端
matplotlib.use('TkAgg')
​
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm  # 颜色映射模块
​
# 1. 定义训练数据集
x_data = np.array([1.0, 2.0, 3.0])
y_data = np.array([2.0, 4.0, 6.0])
​
​
# 2. 定义模型
def forward(x):
    return x * w + b
​
​
# 3. 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)
​
​
# 4. 定义参数
w_list = np.arange(0.0, 4.1, 0.1)
b_list = np.arange(-2.0, 2.1, 0.1)
​
# 创建网格
W, B = np.meshgrid(w_list, b_list)
MSE = np.zeros_like(W)
​
# 5. 训练
for i in range(len(w_list)):
    for j in range(len(b_list)):
        w = w_list[i]
        b = b_list[j]
        l_sum = 0
        for x, y in zip(x_data, y_data):
            l = loss(x, y)
            l_sum = l_sum + l
        MSE[j, i] = l_sum / 3  # 注意这里的索引顺序
​
# 6. 绘制损失函数三维曲面图
# 创建画布和3D坐标轴
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
​
# 绘制曲面图
surf = ax.plot_surface(W, B, MSE, cmap=cm.viridis,  # 使用viridis颜色映射
                       linewidth=0,  # 线条宽度
                       antialiased=True)  # 抗锯齿
​
# 添加颜色条和标签
fig.colorbar(surf, shrink=0.5, aspect=5)  # 添加颜色条
ax.set_xlabel('w')
ax.set_ylabel('b')
ax.set_zlabel('MSE')
ax.set_title('Loss Function Surface')
​
plt.show()

三维图像

相关推荐
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º8 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys8 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56788 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子8 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能9 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144879 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile9 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5779 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥9 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造