刘二大人第2讲-线性模型-带代码以及作业答案

2. 线性模型

2.1 任务介绍

根据时间,预测得分

2.2 步骤

2.2.1 步骤一:模型

随便给一个线性模型,我们使用简化的线性模型(去掉截距只看一元,简单举例)来举例:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> y ^ = w ∗ x \hat{y} = w * x </math>y^=w∗x

2.2.2 步骤二:Loss

目标:找到一个参数w*,使模型的误差最小

在此设定单个样本的Loss函数为:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> L o s s = ( y ^ − y ) 2 = ( x ∗ w − y ) 2 Loss = (\hat{y} - y)^2 = (x*w - y)^2 </math>Loss=(y^−y)2=(x∗w−y)2

整体Loss为MSE(平均平方误差)
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> c o s t = 1 N ∗ ∑ i = 1 N ( y ^ i − y i ) 2 cost = \frac{1}{N} * \sum_{i=1}^{N} (\hat{y}i - yi)^2 </math>cost=N1∗i=1∑N(y^i−yi)2

2.2.3 步骤三:优化

穷举算一下MSE,发现w=2时模型最优

2.3 代码

2.3.1 穷举法

首先介绍通过穷举法找最小Loss

我们通过某些猜想,猜到最小Loss应该出现在w落在0-4区间的情况

我们取样用穷举法

代码如下:

ini 复制代码
import matplotlib as plt
​
# 设置后端为TkAgg
plt.use('TkAgg')
​
import numpy as np
from matplotlib import pyplot as plt
​
# 1. 定义训练数据集
x_data = np.array([1.0, 2.0, 3.0])
y_data = np.array([2.0, 4.0, 6.0])
​
​
# 2. 定义模型
def forward(x):
    return x * w
​
​
# 3. 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)
​
​
# 4.存储遍历的w以及MSE
w_list = []
mse_list = []
​
# 5. 0-4之间以0.1为间隔采样穷举w训练模型
for w in np.arange(0.0, 4.1, 0.1):
    # 计算损失函数
    l_sum = 0
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        # 累加损失
        l_sum = l_sum + l
    # 存储w和mse
    w_list.append(w)
    mse_list.append(l_sum / 3)
​
# 6. 画图查看w与Loss函数的关系
# 尺寸设置
plt.figure(figsize=(10, 5))
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
​
plt.show()
​

注意点:‌zip函数将多个可迭代对象的对应元素组合成元组

2.4 作业

使用有截距的模型来实现以上操作,即猜测的模型为
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> y = w ∗ x + b y = w*x + b </math>y=w∗x+b

答案

通过观察,设定w在0到4之间,b在-2到2之间。

代码如下:

ini 复制代码
import matplotlib
​
# 设置后端
matplotlib.use('TkAgg')
​
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm  # 颜色映射模块
​
# 1. 定义训练数据集
x_data = np.array([1.0, 2.0, 3.0])
y_data = np.array([2.0, 4.0, 6.0])
​
​
# 2. 定义模型
def forward(x):
    return x * w + b
​
​
# 3. 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)
​
​
# 4. 定义参数
w_list = np.arange(0.0, 4.1, 0.1)
b_list = np.arange(-2.0, 2.1, 0.1)
​
# 创建网格
W, B = np.meshgrid(w_list, b_list)
MSE = np.zeros_like(W)
​
# 5. 训练
for i in range(len(w_list)):
    for j in range(len(b_list)):
        w = w_list[i]
        b = b_list[j]
        l_sum = 0
        for x, y in zip(x_data, y_data):
            l = loss(x, y)
            l_sum = l_sum + l
        MSE[j, i] = l_sum / 3  # 注意这里的索引顺序
​
# 6. 绘制损失函数三维曲面图
# 创建画布和3D坐标轴
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
​
# 绘制曲面图
surf = ax.plot_surface(W, B, MSE, cmap=cm.viridis,  # 使用viridis颜色映射
                       linewidth=0,  # 线条宽度
                       antialiased=True)  # 抗锯齿
​
# 添加颜色条和标签
fig.colorbar(surf, shrink=0.5, aspect=5)  # 添加颜色条
ax.set_xlabel('w')
ax.set_ylabel('b')
ax.set_zlabel('MSE')
ax.set_title('Loss Function Surface')
​
plt.show()

三维图像

相关推荐
qinyia20 小时前
WisdomSSH解决因未使用Docker资源导致的磁盘空间不足问题
运维·服务器·人工智能·后端·docker·ssh·github
Stark-C20 小时前
凭实力出圈,头戴耳机的六边形战士!性价比拉满的iKF Mars实测
人工智能
paperxie_xiexuo20 小时前
面向多场景演示需求的AI辅助生成工具体系研究:十类平台的功能分型、技术实现与合规应用分析
大数据·人工智能·powerpoint·ppt
aneasystone本尊20 小时前
学习 LiteLLM 的缓存系统
人工智能
CNRio21 小时前
人工智能基础架构与算力之2 异构算力合池技术:打破资源壁垒的分布式 AI 部署方案
人工智能·分布式
Zlssszls21 小时前
全运会展现科技魅力,数字孪生打造智慧场馆新标杆
人工智能·科技·数字孪生·智慧场馆·全运会
qinyia21 小时前
WisdomSSH如何高效检查服务器状态并生成运维报告
linux·运维·服务器·数据库·人工智能·后端·ssh
BagMM21 小时前
FC-CLIP 论文阅读 开放词汇的检测与分割的统一
人工智能·深度学习·计算机视觉
IT_陈寒21 小时前
Python开发者必知的5个高效技巧,让你的代码性能提升50%
前端·人工智能·后端
张较瘦_21 小时前
[论文阅读] AI + 软件工程 | LLM救场Serverless开发!SlsReuse框架让函数复用率飙升至91%,还快了44%
论文阅读·人工智能·软件工程