LeetCode 70 爬楼梯(Java)

爬楼梯问题:动态规划与斐波那契的巧妙结合

问题描述

假设你正在爬楼梯,需要爬 n 阶才能到达楼顶。每次你可以爬 12 个台阶。求有多少种不同的方法可以爬到楼顶?

示例

  • n = 2 → 输出 21阶+1阶2阶
  • n = 3 → 输出 31阶+1阶+1阶1阶+2阶2阶+1阶

约束1 ≤ n ≤ 45


解题思路

爬楼梯问题本质是斐波那契数列的变种。关键洞察:

  • 到达第 n 阶的最后一步有两种选择:
    • 从第 n-1 阶爬 1
    • 从第 n-2 阶爬 2
  • 因此,状态转移方程为:
    dp[n] = dp[n-1] + dp[n-2]
边界条件
  • dp[0] = 1(没有台阶时视为一种方法)
  • dp[1] = 1(爬 1 阶只有一种方法)

解法分析

1. 记忆化搜索(自顶向下)

通过递归+缓存避免重复计算,时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( n ) O(n) O(n)(递归栈深度+缓存数组)。

java 复制代码
class Solution {
    int[] arr = new int[46]; // 缓存数组(n最大为45)
    
    public int climbStairs(int n) {
        return f(n);
    }
    
    private int f(int n) {
        if (arr[n] != 0) return arr[n]; // 命中缓存
        if (n == 0 || n == 1) return 1; // 边界条件
        
        arr[n] = f(n-1) + f(n-2); // 递归计算并缓存
        return arr[n];
    }
}

优势

  • 直接模拟问题描述,逻辑清晰
  • 避免重复计算,效率较纯递归大幅提升

局限

  • 递归调用栈可能溢出(尽管本题 n≤45 安全)

2. 动态规划(自底向上)

迭代计算,消除递归开销。时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( n ) O(n) O(n)。

java 复制代码
class Solution {
    public int climbStairs(int n) {
        if (n <= 1) return 1;
        int[] dp = new int[n+1];
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
}

3. 空间优化动态规划(最优解)

仅需保存前两个状态,空间复杂度优化至 O ( 1 ) O(1) O(1)。

java 复制代码
class Solution {
    public int climbStairs(int n) {
        if (n <= 1) return 1;
        int a = 1, b = 1;
        for (int i = 2; i <= n; i++) {
            int c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
}

优势

  • 空间效率最高(常数空间)
  • 运行速度最快(无递归和数组操作开销)

数学视角:斐波那契数列

爬楼梯问题等价于斐波那契数列:

台阶数 n 0 1 2 3 4 5
方法数 1 1 2 3 5 8

可直接套用斐波那契通项公式(但浮点运算可能有精度问题):

java 复制代码
public int climbStairs(int n) {
    double sqrt5 = Math.sqrt(5);
    return (int) ((Math.pow((1+sqrt5)/2, n+1) - Math.pow((1-sqrt5)/2, n+1)) / sqrt5);
}

注意 :通项公式在 n>45 时可能因浮点精度失效,迭代解法更可靠。


总结与对比

方法 时间复杂度 空间复杂度 适用场景
记忆化搜索 O ( n ) O(n) O(n) O ( n ) O(n) O(n) 递归思路清晰
动态规划 O ( n ) O(n) O(n) O ( n ) O(n) O(n) 无栈溢出风险
优化动态规划 O ( n ) O(n) O(n) O ( 1 ) O(1) O(1) 最优解,推荐使用
通项公式 O ( 1 ) O(1) O(1) O ( 1 ) O(1) O(1) 理论价值高,精度受限

关键点

  1. 状态定义dp[n] 表示到达第 n 阶的方案数
  2. 转移方程dp[n] = dp[n-1] + dp[n-2]
  3. 边界处理dp[0]=1, dp[1]=1

面试技巧:先给出递归思路,再逐步优化到动态规划,最后给出空间优化版本,展示算法优化能力!

相关推荐
小郭团队4 分钟前
1_1_七段式SVPWM (传统算法反正切)算法理论与 MATLAB 实现详解
人工智能·stm32·嵌入式硬件·算法·dsp开发
极客先躯6 分钟前
高级java每日一道面试题-2025年5月09日-基础篇[协议-注解-缓存]-JCache(JSR-107)是什么?它的主要目标是什么?
java·spring·缓存
u0104058366 分钟前
Java应用的链路追踪:实现分布式跟踪
java·开发语言·分布式
翟天保Steven9 分钟前
医学影像-CBCT图像重建FDK算法
算法·医学影像·图像重建
星诺算法备案10 分钟前
《算法安全自评估报告》的填报与实操(附模板)
人工智能·算法·备案·算法备案
AAD5558889918 分钟前
自动驾驶环境中的车辆目标检测——基于YOLO11-C3k2-RVB的改进算法
算法·目标检测·自动驾驶
予枫的编程笔记20 分钟前
【Java版本】深度解析:不同版本JDK的核心区别与主流版本流行原因
java·jdk
洛生&20 分钟前
Flight Discount
算法
2301_7806698623 分钟前
Stream流及其使用步骤
java