仅需一行代码即可提升训练效果!

最近新看到的一篇paper,挺有意思

在这篇文章中只做了一个出人意料的简单调整,作者建议忽略来自优化器、与最近反向传播中当前梯度符号相反的任何更新。换句话说,建议只应用与当前梯度一致的更新,使更新更稳定,并与最新数据保持一致。他们发现这个小小的调整可以显著加快训练速度,大致梳理了下内容,一起看看

背景

AdamW 成为大多数 Transformer 预训练的默认优化器,近年来虽然出现了一些改进版本,但始终没有真正挑战其主导地位。然而,随着大模型时代的到来,更高效的优化器可以加快训练速度,提高模型能力。因此,该研究提出了一种简单但有效的优化器修改方法------Cautious Optimizer

贡献

  • 提出了Cautious Optimizer,仅需一行代码修改现有动量优化器,即 C-AdamW 和 C-Lion
  • 不会破坏优化器的收敛性
  • 相比于普通动量优化器,能更快地降低损失函数
  • 能够避免"卡在"优化路径上的某些不稳定点,而普通动量优化器可能会在这些点上振荡或减缓收敛

方法

  • 仅在优化器的更新方向与当前梯度方向一致时才执行更新
  • 具体实现如下(PyTorch 代码示例)
python 复制代码
# param p, update u from OPT, grad g
m = (u * g > 0).to(g.dtype)
p.add (u * m / (m.mean() + eps), alpha=-lr)

实验

  1. LLaMA 预训练任务
  • C-AdamW 和 C-Lion 在多个参数规模(60M、100M、350M、1B)下均比原始 AdamW 和 Lion 更快地收敛
  • C-AdamW 训练效率提高 1.47 倍,C-Lion 提高 1.28 倍
  • 在 GLUE 基准测试中,C-AdamW 在多个 NLP 任务上的平均得分比 AdamW 提高 2%
  1. MAE 视觉预训练任务
  • C-AdamW 使评估损失更快下降,表明其在图像表示学习上的有效性
  1. LLM 微调(Instruction Tuning)和 RLHF 任务
  • C-AdamW 在相同训练步数和 PPO 训练回合下,取得了更低的训练损失和更高的奖励分数

TODO

  • 进一步改进 ϕ(masking)函数,使其更有效
  • 在特征空间(如特征向量的主成分)进行 mask,而非直接在参数空间操作
  • 更严格地分析对收敛速率的提升

愣着干嘛,测起来用起来,创新点+1[狗头]

相关推荐
下午写HelloWorld19 分钟前
一维卷积神经网络 (1D CNN)
人工智能·神经网络·cnn
渡我白衣5 小时前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
下午写HelloWorld5 小时前
生成对抗网络GAN的简要理解
人工智能·神经网络·生成对抗网络
陈天伟教授15 小时前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
名为沙丁鱼的猫72919 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
沃达德软件1 天前
图像处理与复原技术
图像处理·人工智能·深度学习·神经网络·目标检测·计算机视觉·目标跟踪
njsgcs1 天前
dqn和cnn有什么区别 dqn怎么保存训练经验到本地
人工智能·神经网络·cnn
是小蟹呀^1 天前
卷积神经网络(CNN):卷积操作
人工智能·神经网络·cnn
葫三生1 天前
存在之思:三生原理与现象学对话可能?
数据库·人工智能·神经网络·算法·区块链
是小蟹呀^1 天前
卷积神经网络(CNN):池化操作
人工智能·深度学习·神经网络·cnn