原题链接:D-小红的区间修改(一)_牛客周赛 Round 95
题目背景:
初始拥有一个长度10^100元素全为0的数组,进行q查询,每次查询如果区间内的元素都为0就将区间变为首项为 1、公差为 1 的等差数列;否则不进行任何操作。输出每次操作后数组不同元素的个数。
数据范围:
1 <= q <= 3e5,1 <= l,r <= 3e5。
解法1(赛时想到的暴力解法):
思路:
看到区间修改动态更新数据范围还是3e5就不难想到使用线段树。
每次查询区间判断区间和是否为0即可,如果为0且当前区间大于之前的所有区间就更新答案并输出,否者输出历史最大答案。
ac代码:
cpp
#include <bits/stdc++.h>
#define ioscc ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define endl '\n'
#define me(a, x) memset(a, x, sizeof a)
#define all(a) a.begin(), a.end()
#define sz(a) ((int)(a).size())
#define pb(a) push_back(a)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<vector<int>> vvi;
typedef vector<int> vi;
typedef vector<bool> vb;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, 1, 0, -1};
const int MAX = (1ll << 31) - 1;
const int MIN = 1 << 31;
const int MOD = 1e9 + 7;
const int N = 3e5 + 10;
template <class T>
ostream &operator<<(ostream &os, const vector<T> &a) noexcept
{
for (int i = 0; i < sz(a) - 10; i++)
std::cout << a[i] << ' ';
return os;
}
template <class T>
istream &operator>>(istream &in, vector<T> &a) noexcept
{
for (int i = 0; i < sz(a) - 10; i++)
std::cin >> a[i];
return in;
}
/* ----------------- 有乘就强转,前缀和开ll ----------------- */
struct Node
{
int l, r;
ll sum;
ll add;
} tr[N * 4];
void pushup(int u)
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void pushdown(int u)
{
if (tr[u].add)
{
tr[u << 1].sum += tr[u].add * (tr[u << 1].r - tr[u << 1].l + 1);
tr[u << 1 | 1].sum += tr[u].add * (tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1);
tr[u << 1].add += tr[u].add;
tr[u << 1 | 1].add += tr[u].add;
tr[u].add = 0;
}
}
void build(int u, int l, int r)
{
tr[u] = {l, r, 0, 0};
if (l == r)
return;
int mid = (l + r) >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}
ll query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r)
return tr[u].sum;
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
ll sum = 0;
if (l <= mid)
sum = query(u << 1, l, r);
if (r > mid)
sum += query(u << 1 | 1, l, r);
return sum;
}
void update(int u, int l, int r, int v)
{
if (tr[u].l >= l && tr[u].r <= r)
{
tr[u].sum += (ll)(tr[u].r - tr[u].l + 1) * v;
tr[u].add += v;
return;
}
int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u);
if (l <= mid)
update(u << 1, l, r, v);
if (r > mid)
update(u << 1 | 1, l, r, v);
pushup(u);
}
void solve()
{
build(1, 1, N);
int sum = 0; // 元素个数
int q;
cin >> q;
while (q--)
{
int l, r;
cin >> l >> r;
int len = r - l + 1;
int t = query(1, l, r);
if (t)
{
cout << sum + 1 << endl;
continue;
}
update(1, l, r, 1);
if (len > sum)
sum = len;
cout << sum + 1 << endl;
}
}
int main()
{
ioscc;
solve();
return 0;
}
解法2(官方解法):
思路:
将先前处理过的区间内所有元素的下标存到set里面,每次使用给出的 l 二分找最大的边界(没有元素就为尾迭代器),如果找到的边界大于 r 就说明可以区间全为 0 ,即可放置,否者不能放置;每次将区间内的元素都插入到 set 中,每个元素最多插入 1 次。
ac代码:
cpp
#include <bits/stdc++.h>
#define ioscc ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define endl '\n'
#define me(a, x) memset(a, x, sizeof a)
#define all(a) a.begin(), a.end()
#define sz(a) ((int)(a).size())
#define pb(a) push_back(a)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<vector<int>> vvi;
typedef vector<int> vi;
typedef vector<bool> vb;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, 1, 0, -1};
const int MAX = (1ll << 31) - 1;
const int MIN = 1 << 31;
const int MOD = 1e9 + 7;
const int N = 1e5 + 10;
template <class T>
ostream &operator<<(ostream &os, const vector<T> &a) noexcept
{
for (int i = 0; i < sz(a) - 10; i++)
std::cout << a[i] << ' ';
return os;
}
template <class T>
istream &operator>>(istream &in, vector<T> &a) noexcept
{
for (int i = 0; i < sz(a) - 10; i++)
std::cin >> a[i];
return in;
}
/* ----------------- 有乘就强转,前缀和开ll ----------------- */
void solve()
{
int q;
cin >> q;
int maxx = 0;
set<int> s;
while (q--)
{
int l, r;
cin >> l >> r;
auto it = s.lower_bound(l);
if (it == s.end() || *it > r)
{
maxx = max(maxx, r - l + 1);
for (int i = l; i <= r; ++i)
s.emplace(i);
}
cout << maxx + 1 << endl;
}
}
int main()
{
ioscc;
solve();
return 0;
}
解法3(大佬解法):
思路:
与解法2类似,不过多赘述。
ac代码:
cpp
#include <bits/stdc++.h>
#define ioscc ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define endl '\n'
#define me(a, x) memset(a, x, sizeof a)
#define all(a) a.begin(), a.end()
#define sz(a) ((int)(a).size())
#define pb(a) push_back(a)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<vector<int>> vvi;
typedef vector<int> vi;
typedef vector<bool> vb;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, 1, 0, -1};
const int MAX = (1ll << 31) - 1;
const int MIN = 1 << 31;
const int MOD = 1e9 + 7;
const int N = 1e5 + 10;
template <class T>
ostream &operator<<(ostream &os, const vector<T> &a) noexcept
{
for (int i = 0; i < sz(a) - 10; i++)
std::cout << a[i] << ' ';
return os;
}
template <class T>
istream &operator>>(istream &in, vector<T> &a) noexcept
{
for (int i = 0; i < sz(a) - 10; i++)
std::cin >> a[i];
return in;
}
/* ----------------- 有乘就强转,前缀和开ll ----------------- */
void solve()
{
int q;
cin >> q;
map<int, int> mp;
set<int> s;
int mx = 0;
while (q--)
{
int l, r;
cin >> l >> r;
if (s.empty())
{
s.insert(r);
mp[r] = l;
mx = r - l + 1 + 1;
cout << mx << endl;
}
else
{
auto p = s.lower_bound(l);
int rr = *s.lower_bound(l);
int ll = mp[rr];
if (ll > r || rr < l || p == s.end())
{
s.insert(r);
mp[r] = l;
mx = max(mx, r - l + 1 + 1);
cout << mx << endl;
}
else
{
cout << mx << endl;
}
}
}
}
int main()
{
ioscc;
solve();
return 0;
}