最近看一篇论文《You Sense Only Once Beneath: Ultra-Light Real-Time Underwater Object Detection》,这篇论文中的主干网络采用了YOLO11中的C3K2模块,这篇就来详细地讲一下C3K2模块。
什么是C3K2模块
C3k2 是 YOLO11 对传统特征提取模块的优化,核心就是 "更快、更准地抓图像里的关键特征" (比如检测目标的轮廓、细节 ),而且得适配 "实时检测" 需求(不能让模型算太久 )
拆解 C3k2 的 "工作逻辑"
第一步:"分支处理"(把任务拆成两拨人做)
- 操作 :把输入的图像特征,分成 "直接传递组" 和 "深度处理组" 两路。
- 直接传递组:啥都不干,直接把原始特征 "原样保留"(保证浅层信息不丢,比如简单的边缘、颜色 )。
- 深度处理组:用一堆小模块(类似迷你画笔),对特征做 "深加工"(提取复杂的深层特征,比如目标的独特形状 )。
第二步:"灵活卷积核"(不同画笔应对不同场景)
- 操作 :深度处理组里,能用 不同大小的卷积核 (比如 3×3、5×5 这些 "画笔尺寸" )。
- 小核(3×3):抓小细节(比如小猫的胡须 )。
- 大核(5×5):抓大轮廓、复杂背景里的目标(比如大卡车的整体形状 )。
- 效果:遇到简单场景(比如清晰的小目标),用小核快速处理;遇到复杂场景(比如大目标、背景乱 ),用大核兜底,保证特征抓得全。
第三步:"融合出结果"(把两拨人的成果合并)
- 操作 :把 "直接传递组" 的浅层特征,和 "深度处理组" 的深层特征, 拼接融合 到一起。
- 效果 :输出一个 "既有简单基础信息,又有复杂深层特征" 的新特征图,方便后面的模块接着分析(就像把草稿和细化内容合并成一幅完整的画 )。
为啥叫 C3k2?
- C3 :继承了经典的 C3 模块思路(核心是 "分支处理 + 残差连接",保证轻量化还能高效提取特征 )。
- k2 :代表它的 灵活性------ 能自由切换不同大小的卷积核(k 就是 kernel,卷积核的意思 ),适配各种检测场景。
总结
- 用 "分支并行 + 灵活卷积核" ,解决了这些痛点:
- 分支并行:减少冗余计算,速度更快(适合实时检测,比如视频里的连续帧检测 )。
- 灵活卷积核:不管目标大小、场景复杂与否,都能精准抓特征(小目标细节、大目标轮廓都不丢 )。