slam--高斯分布

教程

博主解释

多维高斯,一维和二维图像

高斯分布

高斯分布 (Gaussian Distribution),又称正态分布 (Normal Distribution),是描述连续型随机变量分布规律的一种概率分布。

(1) 一维高斯分布
  • μ :均值/数学期望(分布的中心位置),数据集中在均值 μ 附近。

  • σ2 :方差(衡量数据离散程度,σ 为标准差)。

  • exp⁡(⋅):自然指数函数。

-- 简单理解:水机变量集中分布在均值附近的分布。

高斯白噪声

均值通常为 0的高斯噪声。

多维高斯分布

什么是高斯的维数?

就是高斯函数的自变量有几个。

一维:

二维:

三维:

多维高斯pdf:

  • x:n 维向量。

  • μ:均值向量。

  • Σ:协方差矩阵(描述各维度的方差和相关性)。

  • Σ−1:协方差矩阵的逆矩阵。

k 维高斯分布的PDF为:

  • 参数

    • μ:均值向量(k×1)。

    • x:k维向量,表示有k个自变量。

    • Σ:协方差矩阵(k×k,对称正定)。

  • 马氏距离(Mahalanobis Distance):

应用场景

  • 多变量数据建模(如机器人位姿估计)。

表达式解释

为什么需要转置?

在多维高斯分布的指数部分,(x−μ),Σ都是矩阵,矩阵乘法需要满足左矩阵的列数等于右矩阵行数,才能计算,所以:

  1. Σ−1是 n×n 的矩阵。
  2. x−μ 是 n×1的列向量。
  3. 为了矩阵乘法合法,需将第一个向量转为行向量(1×n),即 (x−μ)T。

多维高斯函数中的二次型

在多维高斯分布的指数部分,(x−μ)TΣ−1(x−μ)是一个二次型(Quadratic Form),应该说是一个加加权二次型。

二次型是线性代数和多元统计中的核心概念。

对于 n 维向量 x∈Rn 和一个 n×n的对称矩阵 A,x的二次型定义为:

加权二次型

即二次型中的对称矩阵A有权重:

slam中最小二乘的误差的加权二次型,定义为:

相关推荐
微小冷5 小时前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
软件开发技术深度爱好者9 小时前
概率中“都发生”和“至少一个”问题的解答
概率论·数学广角
FF-Studio2 天前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
如果你想拥有什么先让自己配得上拥有12 天前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论
云博客-资源宝13 天前
Excel函数大全
机器学习·excel·概率论
爱学习的capoo15 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
TomcatLikeYou17 天前
概率论中的基本定义(事件,期望,信息量,香农熵等)
深度学习·机器学习·概率论
phoenix@Capricornus19 天前
期望最大化(EM)算法的推导——Q函数
算法·机器学习·概率论
Algo-hx20 天前
概率论的基本概念:开启不确定性世界的数学之旅
概率论
Algo-hx20 天前
随机变量及其分布:概率论的量化核心
概率论