从0开始学习R语言--Day24--稀疏建模

在解决风险类问题时,我们往往面临要在很多个指标中筛选关键指标的抉择。每个指标都是根据真实数据计算得出的,但是只有少数是能作为解释模型的,其余的都算是冗余特征。

这听起来有点像是稳健回归,但区别在于稳健回归是为了将数据的整体趋势不被部分离散点所带歪,而稀疏建模则是在损失函数中添加惩罚项,从而自动筛选保留少数的重要特征,而不是仅仅通过是否离散来判断。

以下是一个用于解释的例子:

R 复制代码
set.seed(123)
n <- 100  # 样本数
p <- 100  # 特征数

# 生成稀疏数据:只有前5个特征真实影响y
X <- matrix(rnorm(n * p), n, p)
beta_true <- c(3, -2, 1.5, 0, 0, rep(0, p-5))  # 后95个系数为0
y <- X %*% beta_true + rnorm(n, sd = 1)  # 添加噪声

# 转换为数据框(添加一些无关特征)
df <- data.frame(y, X)

library(glmnet)  # 安装:install.packages("glmnet")

# 准备数据(x需为矩阵,y为向量)
x <- as.matrix(df[, -1])
y <- df$y

# 拟合Lasso模型(alpha=1表示纯L1惩罚)
lasso_model <- glmnet(x, y, alpha = 1, lambda = 0.1)  # lambda需调优

# 查看系数(自动稀疏化)
coef(lasso_model)

# 10折交叉验证找最优lambda
cv_fit <- cv.glmnet(x, y, alpha = 1)
plot(cv_fit)  # 展示MSE随lambda的变化

# 最优lambda下的系数
best_lambda <- cv_fit$lambda.min
coef(cv_fit, s = "lambda.min")  # 非零系数即关键特征

# 普通线性回归(所有特征都保留)
lm_model <- lm(y ~ ., data = df)
summary(lm_model)  # 结果难以解释,且容易过拟合

输出:

R 复制代码
Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared:      1,	Adjusted R-squared:    NaN 
F-statistic:   NaN on 99 and 0 DF,  p-value: NA

从输出中可以看到,如果是用普通线性回归,结果显示统计量失效,无法解释;而稀疏建模则是把其余的冗余变量的系数都强制归为0了,而从图像可以观察到,当参数减少时,模型包含的特征逐渐增多,误差也在逐渐下降。

相关推荐
丑小鸭是白天鹅35 分钟前
嵌入式C语言学习笔记之枚举、联合体
c语言·笔记·学习
楼田莉子2 小时前
C++算法题目分享:二叉搜索树相关的习题
数据结构·c++·学习·算法·leetcode·面试
奶黄小甜包3 小时前
C语言零基础第18讲:自定义类型—结构体
c语言·数据结构·笔记·学习
rannn_1115 小时前
【MySQL学习|黑马笔记|Day7】触发器和锁(全局锁、表级锁、行级锁、)
笔记·后端·学习·mysql
喜欢吃燃面6 小时前
C++算法竞赛:位运算
开发语言·c++·学习·算法
传奇开心果编程6 小时前
【传奇开心果系列】Flet框架实现的家庭记账本示例自定义模板
python·学习·ui·前端框架·自动化
_Kayo_12 小时前
node.js 学习笔记3 HTTP
笔记·学习
CCCC131016315 小时前
嵌入式学习(day 28)线程
jvm·学习
星星火柴93616 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
小狗爱吃黄桃罐头16 小时前
正点原子【第四期】Linux之驱动开发篇学习笔记-1.1 Linux驱动开发与裸机开发的区别
linux·驱动开发·学习