django基于Spark的国漫推荐系统

**详细视频演示请联系博主

项目实现:










核心代码:

from pyspark.sql import SparkSession

from pyspark.ml.recommendation import ALS

from pyspark.ml.evaluation import RegressionEvaluator

from pyspark.sql.functions import col

class ComicRecommender:

def init (self):

self.spark = SparkSession.builder

.appName("ComicRecommendation")

.config("spark.executor.memory", "4g")

.getOrCreate()

复制代码
    # 加载数据
    self.ratings = self.spark.read.csv(
        "data/user_ratings.csv", 
        header=True, 
        inferSchema=True
    )
    self.comics = self.spark.read.csv(
        "data/comic_info.csv",
        header=True,
        inferSchema=True
    )
    
def preprocess(self):
    """数据预处理"""
    # 过滤无效评分
    self.ratings = self.ratings.filter((col("rating") >= 1) & (col("rating") <= 5))
    
    # 处理冷启动问题:添加默认评分
    popular_comics = self.ratings.groupBy("comic_id").count()
    avg_rating = self.ratings.groupBy().avg("rating").first()[0]
    
    default_ratings = popular_comics.filter(col("count") > 100) \
        .limit(100) \
        .withColumn("user_id", lit(0)) \
        .withColumn("rating", lit(avg_rating))
    
    self.ratings = self.ratings.union(default_ratings)

def train_model(self):
    """训练ALS模型"""
    # 划分训练集/测试集
    train, test = self.ratings.randomSplit([0.8, 0.2])
    
    # 配置ALS模型
    als = ALS(
        maxIter=10,
        regParam=0.01,
        userCol="user_id",
        itemCol="comic_id",
        ratingCol="rating",
        coldStartStrategy="drop"
    )
    
    # 训练模型
    self.model = als.fit(train)
    
    # 评估模型
    predictions = self.model.transform(test)
    evaluator = RegressionEvaluator(
        metricName="rmse", 
        labelCol="rating",
        predictionCol="prediction"
    )
    rmse = evaluator.evaluate(predictions)
    print(f"模型RMSE: {rmse}")
    
    return self.model

def generate_recommendations(self, user_id, num_recs=10):
    """为用户生成推荐"""
    # 创建用户DF
    user_df = self.spark.createDataFrame([(user_id,)], ["user_id"])
    
    # 获取推荐
    recs = self.model.recommendForUserSubset(user_df, num_recs)
    
    # 提取推荐结果
    rec_list = recs.select("recommendations").first()[0]
    
    # 关联漫画信息
    comic_ids = [row.comic_id for row in rec_list]
    comic_recs = self.comics.filter(col("id").isin(comic_ids))
    
    return comic_recs.toPandas().to_dict(orient="records")

def update_model(self, new_ratings):
    """增量更新模型"""
    # 将新评分添加到数据集
    new_df = self.spark.createDataFrame(new_ratings)
    self.ratings = self.ratings.union(new_df)
    
    # 重新训练模型
    self.train_model()
相关推荐
计算机学姐40 分钟前
基于Python的旅游数据分析可视化系统【2026最新】
vue.js·后端·python·数据分析·django·flask·旅游
gongzemin1 小时前
Django入门2--设置数据库 admin
python·django
KimLiu2 小时前
LCODER之Python:使用Django搭建服务端
后端·python·django
IT研究室5 小时前
大数据毕业设计选题推荐-基于大数据的国内旅游景点游客数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
XueminXu6 小时前
Spark提交任务的资源配置和优化
spark·并行度·spark-submit·driver-memory·num-executors·executor-memory·executor-cores
Leo.yuan6 小时前
不同数据仓库模型有什么不同?企业如何选择适合的数据仓库模型?
大数据·数据库·数据仓库·信息可视化·spark
小朋友,你是否有很多问号?8 小时前
spark11-sparkSQL 实现wordcount
spark
小宁爱Python11 小时前
Django 从环境搭建到第一个项目
后端·python·django
言之。12 小时前
Django高效查询:values_list实战详解
django·sqlite·list
言之。19 小时前
Django中的软删除
数据库·django·sqlite