从0开始学习R语言--Day23--稳健回归

稳健回归

一般来说,对于打印出来后明显分布的比较集中,靠近线分布的数据,我们会优先用最小二乘法(OLS)去回归数据,在正常的情况下它的效果很好,但如果数据中存在了比较离谱的离散点,那么由于OLS的算法机制,它会为了强行去拟合这些离散点去扭曲回归线,也就是让其产生偏离,这会严重误导我们对数据的判断。而稳健回归在这类处理中,引入了权重,通过对离散点的误差计算,当它认为这是会产生极大误差的点时,会赋予这些点很低的权重(有时甚至接近于0),从而使模型能够忽略这些离散点,较好的呈现出数据本身的统计性质。

以下是一个例子来说明:

R 复制代码
set.seed(123)  # 固定随机数
n <- 100       # 样本量

# 生成正常数据
x <- rnorm(n, mean = 10, sd = 2)
y <- 2 * x + rnorm(n, mean = 0, sd = 1)  # 真实关系: y = 2x + 噪声

# 添加异常值(5个极端点)
outliers <- sample(1:n, 5)
y[outliers] <- y[outliers] + rnorm(5, mean = 15, sd = 3)  # 人为制造异常

# 合并为数据框
df <- data.frame(x, y)
head(df)
# 安装包(如果未安装)
# install.packages("MASS")

library(MASS)  # 包含稳健回归函数rlm()

# 普通最小二乘法(OLS)
ols_model <- lm(y ~ x, data = df)
summary(ols_model)  # 查看结果

# 稳健回归(M估计,默认使用Huber损失函数)
robust_model <- rlm(y ~ x, data = df)
summary(robust_model)  # 查看结果

# 绘制数据点和回归线
plot(df$x, df$y, pch = 16, col = ifelse(1:n %in% outliers, "red", "blue"),
     main = "OLS vs Robust Regression")
abline(ols_model, col = "black", lwd = 2, lty = 2)      # OLS回归线(虚线)
abline(robust_model, col = "green", lwd = 2)            # 稳健回归线(实线)
legend("topleft", legend = c("OLS", "Robust"), 
       col = c("black", "green"), lty = c(2, 1), lwd = 2)

输出:

R 复制代码
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   2.4482     1.9075   1.284    0.202    
x             1.8175     0.1844   9.854 2.51e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Coefficients:
            Value   Std. Error t value
(Intercept)  0.1394  0.5974     0.2334
x            1.9752  0.0578    34.1940

Residual standard error: 0.992 on 98 degrees of freedom

从输出中我们可以明显观察到,OLS的截距是2.4482,而相比之下,稳健回归的是0.1394,更靠近理论上不设置噪声时的截距为0的情况。结合图像来看,OLS生成的虚线很明显被离散点误导了,向上偏移,而稳健回归的标准误差较小也说明估计更可靠。

相关推荐
好奇龙猫8 分钟前
【人工智能学习-AI入试相关题目练习-第九次】
人工智能·学习
zhangrelay34 分钟前
影响移动固态磁盘稳定性的原因有哪些呢?
笔记·学习
棒棒的皮皮1 小时前
【深度学习】YOLO学习教程汇总
深度学习·学习·yolo·计算机视觉
詩不诉卿2 小时前
Zephyr学习之spi flash驱动记录(w25q128)
学习
yanyu-yaya2 小时前
速学兼复习之vue3章节3
前端·javascript·vue.js·学习·前端框架
沉默-_-3 小时前
微信小程序网络请求 wx.request 详解
网络·学习·微信小程序·小程序
嗯嗯=3 小时前
STM32单片机学习篇5
stm32·单片机·学习
头疼的程序员4 小时前
计算机网络:自顶向下方法(第七版)第二章 学习分享(二)
学习·计算机网络
沉默-_-4 小时前
微信小程序页面配置详解
学习·微信小程序·apache·微信开发者工具
北京云帆互联科技4 小时前
云帆学习考试系统更新说明v8.8.0
学习·考试系统·高校考试系统