tensorflow GPU训练loss与val loss值差距过大问题

问题

最近在ubuntu gpu上训练模型,训练十轮,结果如下

复制代码
epoch,loss,lr,val_loss
200,nan,0.001,nan
200,0.002468767808750272,0.001,44.29948425292969
201,0.007177405059337616,0.001,49.16984176635742
202,0.012423301115632057,0.001,49.30305862426758
203,0.019116541370749474,0.001,48.27520751953125
204,0.02645580656826496,0.0005,48.38237762451172
205,0.03023119457066059,0.0005,48.2923469543457
206,0.034110430628061295,0.0005,48.55632781982422
207,0.03898066654801369,0.00025,48.616432189941406
208,0.04163944348692894,0.00025,48.568756103515625
209,0.04249056056141853,0.00025,48.68966293334961

发现loss只有0.0几,而val loss达到了四十多,而我是在已经训练好的模型的基础上,使用新的数据集,继续训练的,差距这么的大,肯定不是模型过拟合,这明显是有异常的,但是我在CPU上训练,结果val和val loss都是-15左右,同样的代码和数据,为什么会出现这么大的差异呢。

解决方案

原因:是因为我用的tensorflow 2.2版本+cuda10.1,而GPU是3090,cuda版本和gpu不适配,需要升级cuda,因此我使用tensorflow 2.4+cuda 11.0后,训练就正常了,

解决方法是在github上看见的
here

相关推荐
IT_陈寒1 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
数据智能老司机2 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
逛逛GitHub2 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心2 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
数据智能老司机3 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机3 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机3 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i3 小时前
drf初步梳理
python·django
每日AI新事件3 小时前
python的异步函数
python
这里有鱼汤4 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python