超实用!SpringAI提示词的4种神级用法

提示词(Prompt)是输入给大模型(LLM)的文本指令,用于明确地告诉大模型你想要解决的问题或完成的任务,也是大语言模型理解用户需求并生成准确答案的基础。因此 prompt 使用的好坏,直接决定了大模型生成结果的质量(是否符合预期)

那问题来了,在 Spring AI/Spring AI Alibaba 如何用好提示词?以及提示词的使用方式有哪些呢?接下来本文一起来盘点一下。

1.简单提示词使用

最简单的设置固定系统提示词和用户提示词的用法如下:

java 复制代码
@RequestMapping("/chat")
public String chat(String msg) {
    String result = chatClient.prompt()
            .system("你是一个问答助手") // 设置系统提示词
            .user(msg)                 // 设置用户提示词
            .call().content();
    System.out.println("结果:" + result);
    return result;
}

2.动态提示词

所谓的动态提示词指的是需要进行动态参数替换的提示词,它的基本使用如下:

java 复制代码
@RequestMapping("/chat")
public String chat(String topic) {
    PromptTemplate promptTemplate =
            new PromptTemplate("你是一个{role},讲一个关于{topic}的故事");
    Prompt prompt = promptTemplate.create(Map.of("role", "讲故事的助手",
            "topic", topic));
    return chatModel.call(prompt).getResult().getOutput().getText();
}

3.从文件中读取动态提示词

动态提示词如果比较短,我们可以像上面一样写到代码里面,如果比较长,我们可以把它单独放的某个文件模版中进行读取使用,具体实现如下:

java 复制代码
// 从文件中读取提示词
@Value("classpath:type-system-prompt-txt")
private Resource systemPrompt;

@RequestMapping("/chat")
public String chat(String msg) {
    return chatClient.prompt()
            .system(systemPrompt) 
            .user(msg)
            .call()
            .content();
    }
}

4.Lambda表达式提示词

当提示词比较短的时候,除了可以使用 PromptTemplate 设置提示词之外,我们还可以使用 Lambda 表达式来实现动态提示词的设置,具体使用如下:

java 复制代码
@RequestMapping("/chat")
public User chat(String name) {
    return chatClient.prompt()
            .user(msg -> msg.text("我叫{name},今年18岁,爱好打羽毛球。")
                    .param("name", name))
            .call()
            .entity(User.class); // 结果化输出
}

小结

提示词是用户和大模型交互的直接手段,所以在程序中用好提示词是至关重要的。本文提供了 4 种提示词的使用方式,开发者可以根据具体的业务场景,选择合适的提示词使用方式来完成 AI 应用开发。一起实操起来吧~

本文已收录到我的技术小站 www.javacn.site,其中包含的内容有:Spring AI、LangChain4j、Dify、Spring AI Alibaba、AI Agent、MCP、Function Call、RAG、向量数据库、Prompt、多模态、向量数据库、嵌入模型等内容。

相关推荐
安全二次方security²18 小时前
CUDA C++编程指南(7.25)——C++语言扩展之DPX
c++·人工智能·nvidia·cuda·dpx·cuda c++编程指南
童话名剑21 小时前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
桂花很香,旭很美1 天前
智能体技术架构:从分类、选型到落地
人工智能·架构
HelloWorld__来都来了1 天前
2026.1.30 本周学术科研热点TOP5
人工智能·科研
aihuangwu1 天前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_1 天前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐1 天前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
惊讶的猫1 天前
探究StringBuilder和StringBuffer的线程安全问题
java·开发语言
九尾狐ai1 天前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
jmxwzy1 天前
Spring全家桶
java·spring·rpc