了解集合通信与模型并行策略

集合通信

集合通信基础

通过HCCS实现两两互联(Full Mesh),如NPU与NPU之间,CPU与CPU之间;NPU和CPU之间通过PCIE连接。 Full Mesh是指在一个网络拓扑中,每个节点都直接连接到其他节点,形成一个完全互联的网络结构。在Full Mesh网络中,任何两个节点之间都可以直接通信。

2.A+X(16P):

双mesh组网(8P Full-mesh)

集合通信原语

  • 一对多 Broadcast :将通信域内root节点的数据广播到其他rank

    Scatter :将通信域内root节点的数据均分并散布至其他rank

  • 多对一

  • 多对多

模型并行策略

  • 数据并行(Data Parallelism,DP)

数据并行是指将一个批次(batch)的训练数据分成若干个小批次,分发给多个计算节点来进行训练的并行方式。

  • 流水并行(Pipeline Parallelism,PP)

对于分布式训练,当模型规模太大而无法存放在单个计算节点上时,可以使用流水并行。在流水并行中,模型被逐层拆分成几个阶段,每个计算节点仅存储并执行其中的一个阶段(一个阶段可以是一层,也可以是相邻的多层)。这样可以有效减轻每个节点内的存储压力。

  • 张量并行(Tensor Parallelism,TP)

如果单层/单阶段的模型依然太大而无法放在单个节点上怎么办?那就将它的参数进一步切分到多个节点上,每个节点计算部分结果,再通过通过节点间的通信获取到最终结果,这就是张量并行。简言之,流水并行是模型的层间切割,而张量并行是模型的层内切割。这两种模型并行的方式是可以同时存在的。

  • 专家并行(Experts Parallelism,EP)

专家并行是在分布式学习中专门针对MoE场景的并行策略,其主要思想就是将不同专家放在不同计算节点上进行并行计算。专家并行与之前所有的并行相比,最大的不同在于,输入数据需要通过一个动态的路由选择机制分发给相应专家,此处会涉及到一个所有节点上的数据重分配的动作,然后在所有专家处理完成后,又需要将分散在不同节点上的数据按原来的次序整合起来。

参考资料

相关推荐
白-胖-子4 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手5 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道6 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.06 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12017 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师7 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen7 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域7 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木7 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
凪卄12137 小时前
图像预处理 二
人工智能·python·深度学习·计算机视觉·pycharm