了解集合通信与模型并行策略

集合通信

集合通信基础

通过HCCS实现两两互联(Full Mesh),如NPU与NPU之间,CPU与CPU之间;NPU和CPU之间通过PCIE连接。 Full Mesh是指在一个网络拓扑中,每个节点都直接连接到其他节点,形成一个完全互联的网络结构。在Full Mesh网络中,任何两个节点之间都可以直接通信。

2.A+X(16P):

双mesh组网(8P Full-mesh)

集合通信原语

  • 一对多 Broadcast :将通信域内root节点的数据广播到其他rank

    Scatter :将通信域内root节点的数据均分并散布至其他rank

  • 多对一

  • 多对多

模型并行策略

  • 数据并行(Data Parallelism,DP)

数据并行是指将一个批次(batch)的训练数据分成若干个小批次,分发给多个计算节点来进行训练的并行方式。

  • 流水并行(Pipeline Parallelism,PP)

对于分布式训练,当模型规模太大而无法存放在单个计算节点上时,可以使用流水并行。在流水并行中,模型被逐层拆分成几个阶段,每个计算节点仅存储并执行其中的一个阶段(一个阶段可以是一层,也可以是相邻的多层)。这样可以有效减轻每个节点内的存储压力。

  • 张量并行(Tensor Parallelism,TP)

如果单层/单阶段的模型依然太大而无法放在单个节点上怎么办?那就将它的参数进一步切分到多个节点上,每个节点计算部分结果,再通过通过节点间的通信获取到最终结果,这就是张量并行。简言之,流水并行是模型的层间切割,而张量并行是模型的层内切割。这两种模型并行的方式是可以同时存在的。

  • 专家并行(Experts Parallelism,EP)

专家并行是在分布式学习中专门针对MoE场景的并行策略,其主要思想就是将不同专家放在不同计算节点上进行并行计算。专家并行与之前所有的并行相比,最大的不同在于,输入数据需要通过一个动态的路由选择机制分发给相应专家,此处会涉及到一个所有节点上的数据重分配的动作,然后在所有专家处理完成后,又需要将分散在不同节点上的数据按原来的次序整合起来。

参考资料

相关推荐
AI_56781 小时前
SQL性能优化全景指南:从量子执行计划到自适应索引的终极实践
数据库·人工智能·学习·adb
cyyt1 小时前
深度学习周报(2.2~2.8)
人工智能·深度学习
阿杰学AI1 小时前
AI核心知识92——大语言模型之 Self-Attention Mechanism(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·transformer·自注意力机制
陈天伟教授1 小时前
人工智能应用- 语言处理:03.机器翻译:规则方法
人工智能·自然语言处理·机器翻译
Σίσυφος19001 小时前
PCL 姿态估计 RANSAC + SVD(基于特征匹配)
人工智能·机器学习
Warren2Lynch1 小时前
C4 vs UML:从入门到结合使用的完整指南(含 Visual Paradigm AI 实操)
人工智能·机器学习·uml
Ryan老房1 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
2401_836235861 小时前
财务报表识别产品:从“数据搬运”到“智能决策”的技术革命
人工智能·科技·深度学习·ocr·生活
明明如月学长1 小时前
全网最火的 Agent Skills 都在这了!这 7 个宝藏市场建议收藏
人工智能