OpenCV CUDA模块设备层-----在GPU 上高效地执行两个 uint 类型值的最大值比较函数vmax2()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

OpenCV 的 CUDA 模块(cudev) 中的一个设备端内联函数,用于在 GPU 上高效地执行两个 uint 类型值的最大值比较。

该函数返回两个无符号整数 a 和 b 中的较大值:

bash 复制代码
return (a > b) ? a : b;

函数原型

cpp 复制代码
__device__ __forceinline__ uint cv::cudev::vmax2 	( 	uint  	a,
		uint  	b 
	) 		

参数

  • a uint 第一个无符号整数(通常表示像素值)
  • b uint 第二个无符号整数(另一个像素值或参考值)

返回值

返回 a 和 b 中较大的那个值,类型为 uint。

使用场景

这个函数常用于以下图像/视频处理任务中:

  • 图像增强(如取最大邻域值)
  • 多帧合成中的最大值投影(如天文摄影、医学成像)
  • 构建自定义滤波器(如最大值滤波)
  • GPU 并行像素级比较与选择操作

代码

cpp 复制代码
#include <opencv2/cudev.hpp>
#include <opencv2/cudev/util/simd_functions.hpp>


using namespace cv::cudev;

// CUDA kernel
template <typename T>
__global__ void computeMaxKernel(
    const PtrStep<T> src1,
    const PtrStep<T> src2,
    PtrStep<T> dst,
    int width,
    int height)
{
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;

    if (x < width && y < height) {
        uint a = static_cast<uint>(src1(y, x));
        uint b = static_cast<uint>(src2(y, x));
        dst(y, x) = static_cast<T>(vmax2(a, b));  // 取最大值
    }
}

int main() {
    // 加载两张图像
    cv::Mat h_src1 = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/img0.jpg", cv::IMREAD_GRAYSCALE);
    cv::Mat h_src2 = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/img1.jpg", cv::IMREAD_GRAYSCALE);

    if (h_src1.empty() || h_src2.empty()) {
        std::cerr << "Failed to load images!" << std::endl;
        return -1;
    }

    // 上传到 GPU
    cv::cuda::GpuMat d_src1, d_src2, d_max;
    d_src1.upload(h_src1);
    d_src2.upload(h_src2);
    d_max.create(h_src1.size(), h_src1.type());

    // 设置 kernel 参数
    dim3 block(16, 16);
    dim3 grid((d_src1.cols + block.x - 1) / block.x,
              (d_src1.rows + block.y - 1) / block.y);

    // 启动 kernel(显式指定模板参数 uchar)
    computeMaxKernel<uchar><<<grid, block>>>(d_src1, d_src2, d_max, d_src1.cols, d_src1.rows);

    // 下载结果并显示
    cv::Mat h_max;
    d_max.download(h_max);
    cv::imshow("Max Image", h_max);
    cv::waitKey(0);

    return 0;
}

运行结果

相关推荐
Blossom.1188 分钟前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
小贤编程手记23 分钟前
毛绒变装、吉卜力风...快手AI视频可灵为什么好用?
人工智能·数码产品
TGITCIC30 分钟前
从依赖到自研:一个客服系统NLP能力的跃迁之路
人工智能·智能客服·ai大模型·大模型落地·ai落地·大模型ai·rag增强检索
鲲鹏Talk32 分钟前
燃爆了!我在字节亲历一场 AI 编程盛宴,干货多到溢出来!
人工智能·程序员
MARS_AI_1 小时前
云蝠智能VoiceAgent:AI赋能售后服务场景的创新实践
人工智能·语言模型·自然语言处理·人机交互·信息与通信
全星0071 小时前
从合规到卓越:全星QMS如何成为制造企业的质量战略引擎
人工智能
桃源学社(接毕设)1 小时前
基于人工智能和物联网融合跌倒监控系统(LW+源码+讲解+部署)
人工智能·python·单片机·yolov8
CCF_NOI.2 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
张3蜂2 小时前
深度解读 Browser-Use:让 AI 驱动浏览器自动化成为可能
运维·人工智能·自动化