OpenCV CUDA模块设备层-----在GPU 上高效地执行两个 uint 类型值的最大值比较函数vmax2()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

OpenCV 的 CUDA 模块(cudev) 中的一个设备端内联函数,用于在 GPU 上高效地执行两个 uint 类型值的最大值比较。

该函数返回两个无符号整数 a 和 b 中的较大值:

bash 复制代码
return (a > b) ? a : b;

函数原型

cpp 复制代码
__device__ __forceinline__ uint cv::cudev::vmax2 	( 	uint  	a,
		uint  	b 
	) 		

参数

  • a uint 第一个无符号整数(通常表示像素值)
  • b uint 第二个无符号整数(另一个像素值或参考值)

返回值

返回 a 和 b 中较大的那个值,类型为 uint。

使用场景

这个函数常用于以下图像/视频处理任务中:

  • 图像增强(如取最大邻域值)
  • 多帧合成中的最大值投影(如天文摄影、医学成像)
  • 构建自定义滤波器(如最大值滤波)
  • GPU 并行像素级比较与选择操作

代码

cpp 复制代码
#include <opencv2/cudev.hpp>
#include <opencv2/cudev/util/simd_functions.hpp>


using namespace cv::cudev;

// CUDA kernel
template <typename T>
__global__ void computeMaxKernel(
    const PtrStep<T> src1,
    const PtrStep<T> src2,
    PtrStep<T> dst,
    int width,
    int height)
{
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;

    if (x < width && y < height) {
        uint a = static_cast<uint>(src1(y, x));
        uint b = static_cast<uint>(src2(y, x));
        dst(y, x) = static_cast<T>(vmax2(a, b));  // 取最大值
    }
}

int main() {
    // 加载两张图像
    cv::Mat h_src1 = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/img0.jpg", cv::IMREAD_GRAYSCALE);
    cv::Mat h_src2 = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/img1.jpg", cv::IMREAD_GRAYSCALE);

    if (h_src1.empty() || h_src2.empty()) {
        std::cerr << "Failed to load images!" << std::endl;
        return -1;
    }

    // 上传到 GPU
    cv::cuda::GpuMat d_src1, d_src2, d_max;
    d_src1.upload(h_src1);
    d_src2.upload(h_src2);
    d_max.create(h_src1.size(), h_src1.type());

    // 设置 kernel 参数
    dim3 block(16, 16);
    dim3 grid((d_src1.cols + block.x - 1) / block.x,
              (d_src1.rows + block.y - 1) / block.y);

    // 启动 kernel(显式指定模板参数 uchar)
    computeMaxKernel<uchar><<<grid, block>>>(d_src1, d_src2, d_max, d_src1.cols, d_src1.rows);

    // 下载结果并显示
    cv::Mat h_max;
    d_max.download(h_max);
    cv::imshow("Max Image", h_max);
    cv::waitKey(0);

    return 0;
}

运行结果

相关推荐
CoovallyAIHub几秒前
夜间、远距离都不怕!新型无人机识别算法准确率超92%
深度学习·算法·计算机视觉
ekprada几秒前
Day 42 深度学习可解释性:Grad-CAM 与 Hook 机制
人工智能·机器学习
nwsuaf_huasir1 分钟前
深度学习雷达信号参数估计
人工智能·深度学习
永霖光电_UVLED2 分钟前
Navitas 与 Cyient 达成合作伙伴关系,旨在推动氮化镓(GaN)技术在印度的普及
大数据·人工智能·生成对抗网络
视觉光源老郑5 分钟前
推荐一些机器视觉检测光源的优秀品牌
人工智能·计算机视觉·视觉检测
serve the people7 分钟前
AI 模型识别 Nginx 流量中爬虫机器人的防御机制
人工智能·爬虫·nginx
PS1232328 分钟前
桥梁与隧道安全守护者 抗冰冻型风速监测方案
大数据·人工智能
九鼎创展科技8 分钟前
「有温度的陪伴」:基于全志 V821 的情感共鸣型实体机器人详解
linux·人工智能·嵌入式硬件·机器人
白熊18812 分钟前
【论文精读】Transformer: Attention Is All You Need 注意力机制就是一切
人工智能·深度学习·transformer
CES_Asia13 分钟前
资本赋能实体智能——2026 CES Asia机器人产业投资峰会定档北京
大数据·人工智能·microsoft·机器人