回溯题解——子集【LeetCode】二进制枚举法

78. 子集

✅ 一、算法逻辑讲解(逐步通顺解释)

这段代码的目标是:给定一个不含重复元素的整数数组 nums,返回其所有可能的子集(幂集)

步骤解析:

  1. 1 << len(nums)

    • 这是 2^n 的简写方式,表示子集的总数。

    • 因为一个长度为 n 的集合一共有 2^n 个子集。

  2. for i in range(1<<len(nums)):

    • i02^n - 1

    • 每个数字 i 的二进制表示就是一个子集的"选取方案",每一位表示该位置元素选不选。

      • 例如:nums = [a, b, c]i = 5 = 0b101 表示选 ac(第0和第2位是1)。
  3. [x for j, x in enumerate(nums) if i >> j & 1]

    • 枚举 nums 中的每个元素 x 及其下标 j

    • 如果 i 的第 j 位是 1,就说明这个元素被选入子集。

    • i >> j & 1 是判断第 j 位是否为1的经典写法。

  4. 将生成的子集 subsets 加入答案列表 ans 中。

  5. 返回所有子集的列表。


⭐ 二、核心思路

核心点是:用位运算枚举所有子集。

  • 将每一个子集的选取用一个 n 位二进制数表示(0 表示不选,1 表示选)。

  • 枚举 02^n - 1,每个整数的二进制形式唯一表示一个子集。

  • 位运算用于高效判断哪些元素被选中。

这是一种非常高效、简洁的生成子集的方式,尤其适用于集合元素较少(如 n ≤ 20)的场景。

python 复制代码
class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        ans = []
        for i in range(1<<len(nums)):
            subsets = [x for j,x in enumerate(nums) if i>>j&1]
            ans.append(subsets)
        return ans

⏱ 三、时间复杂度分析

时间复杂度:O(n * 2^n)

  • 一共有 2^n 个子集。

  • 每个子集最多需要扫描 n 个元素来判断是否包含(通过 i >> j & 1 判断)。

  • 所以总的复杂度是:O(n * 2^n)

比如 nums = [1,2,3],就需要计算 2^3 = 8 个子集,每个最多判断 3 个位置。


💾 四、空间复杂度分析

空间复杂度:O(n * 2^n)(输出结果空间)

  • 每个子集可能长度为 n,最多有 2^n 个子集。

  • 所以总的空间用于保存输出结果是 O(n * 2^n)

额外空间(不含输出):O(n)

  • 每次生成一个子集使用一个列表(临时变量 subsets),最多长度为 n

  • 所以辅助空间是 O(n)

相关推荐
Terio_my18 分钟前
Java bean 数据校验
java·开发语言·python
Tony Bai23 分钟前
【Go开发者的数据库设计之道】07 诊断篇:SQL 性能诊断与问题排查
开发语言·数据库·后端·sql·golang
超级大只老咪44 分钟前
何为“类”?(Java基础语法)
java·开发语言·前端
我笑了OvO1 小时前
C++类和对象(1)
java·开发语言·c++·类和对象
无咎.lsy1 小时前
裸K初级篇 - (一)蜡烛突破信号
python
virtual_k1smet2 小时前
#等价于e * d ≡ 1 mod φ(n) #模逆元详解
人工智能·算法·机器学习
可触的未来,发芽的智生3 小时前
新奇特:神经网络的集团作战思维,权重共享层的智慧
人工智能·python·神经网络·算法·架构
_屈臣_3 小时前
卡特兰数【模板】(四个公式模板)
c++·算法
渡我白衣3 小时前
C++ 异常处理全解析:从语法到设计哲学
开发语言·c++·面试
jerryinwuhan3 小时前
Python数据挖掘之基础分类模型_支持向量机(SVM)
python·支持向量机·数据挖掘