CAMEL 框架之 RolePlaying 角色扮演

CAMEL 框架之 RolePlaying 角色扮演

首先我们来看看,怎么让 RolePlaying 为我们服务。

创建 Model

RolePlaying 是两个智能体之间的角色扮演,底层其实还是 AI 大模型,我们可以通过 ModelFactory 来创建一个 model。

python 复制代码
model = ModelFactory.create(
    model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
    model_type="Qwen/Qwen2.5-72B-Instruct",
    url='https://api-inference.modelscope.cn/v1/',
    api_key=api_key
)

创建 RolePlaying session

py 复制代码
def main(model=model, chat_turn_limit=50) -> None:
    task_prompt = "写一个快速排序算法"#设置任务目标
    role_play_session = RolePlaying(
        assistant_role_name="Python 程序员",#设置AI助手角色名
        assistant_agent_kwargs=dict(model=model),
        user_role_name="算法老师",#设置用户角色名,在roleplay中,user用于指导AI助手完成任务
        user_agent_kwargs=dict(model=model),
        task_prompt=task_prompt,
        with_task_specify=True,
        task_specify_agent_kwargs=dict(model=model),
        output_language='中文'#设置输出语言
    )

task_prompt是我们要完成的任务

assistant_role_name 设置 assistant_agent 的角色

user_role_name 设置 user_agent 的角色

RolePlaying() 实例化之后,我们就得到一个 session,到这一步其实我们已经初始化好了两个智能体, 我们把任务交给智能体,user_agent 会指导 assistant_agent 去完成我们的任务。

下面是 RolePlay 内部集成的,给 assistant_agent 的 prompt:

可以看到对 assistant_agent 说的,其角色扮演的 prompt 是:

Never instruct me!

You must help me to complete the task.

text 复制代码
content='===== RULES OF ASSISTANT =====\n
Never forget you are a python 程序员 and I am a 算法老师. 
Never flip roles! 
Never instruct me!\n
We share a common interest in collaborating to successfully complete a task.
You must help me to complete the task.

下面是 RolePlay 内部集成的,给 user_agent 的 prompt:

可以看到对 assistant_agent 说的,其角色扮演的 prompt 是:

You will always instruct me

I must help you to complete the task

text 复制代码
content='===== RULES OF USER =====\n
Never forget you are a 算法老师 and I am a python 程序员.
Never flip roles!
You will always instruct me.\n
We share a common interest in collaborating to successfully complete a task.
I must help you to complete the task.

通过上述四句的关键 prompt,实现了两个 agent 的角色扮演, 在他们后续的交流过程中,将会按照 user_agent 会指导 assistant_agent 的模式去完成任务。

RolePlaying 的其他属性

RolePlaying 类实现了两个智能体之间的角色扮演功能,支持任务细化、任务规划、引入批评者等特性,并且提供同步和异步的对话推进方法。

下面我们看看 RolePlaying 的初始化,就可以直接地了解他的核心内容了:

python 复制代码
 def __init__(
        self,
        assistant_role_name: str,
        user_role_name: str,
        *,
        critic_role_name: str = "critic",
        task_prompt: str = "",
        with_task_specify: bool = True, # 设置是否使用任务细化智能体
        with_task_planner: bool = False, # 设置是否使用任务规划智能体
        with_critic_in_the_loop: bool = False, # 设置在对话循环中引入批评者
        critic_criteria: Optional[str] = None,
        model: Optional[BaseModelBackend] = None,
        task_type: TaskType = TaskType.AI_SOCIETY,
        assistant_agent_kwargs: Optional[Dict] = None,
        user_agent_kwargs: Optional[Dict] = None,
        task_specify_agent_kwargs: Optional[Dict] = None,
        task_planner_agent_kwargs: Optional[Dict] = None,
        critic_kwargs: Optional[Dict] = None,
        sys_msg_generator_kwargs: Optional[Dict] = None,
        extend_sys_msg_meta_dicts: Optional[List[Dict]] = None,
        extend_task_specify_meta_dict: Optional[Dict] = None,
        output_language: Optional[str] = None,
        stop_event: Optional[threading.Event] = None,
    ) -> None:
    # 其他代码省略

with_task_specify 设置是否使用任务细化智能体,默认是开启的,会对任务进行拆分、细分,再一步步完成。

with_task_planner 设置是否使用任务规划智能体。

with_critic_in_the_loop 设置在对话循环中引入批评者

通过这三个属性,我们可以看到 Camel 中的 RolePlaying 和平时我们直接单纯地使用 AI 是有很大区别的。 在 RolePlaying 中我们可以对 Agent 进行更深层次的、更精细化的设置,比如任务拆解,比如批评者的引入(就好像有主管在旁边监督指导工作,这样完成的任务质量更高)

批评者的引入,使得 agent 间在完成任务过程中是有监督的,就像监督学习算法一样(maybe 不是很恰当,但是类似),在出现 AI 幻觉或者其他偏离原有任务的时候可以及时提醒。

而我们单纯使用 AI 的话,很多时候它不会主动拆解任务,更不会自我监督,偏离了之后就胡说一通了,特别是会话较长了之后。

相关推荐
Darken033 分钟前
基于STM32---编码器测速(利用GPIO模拟脉冲信号)
人工智能·stm32·串口助手·gpio模拟编码器
Mintopia3 分钟前
🪄 生成式应用的 **前端 orchestration 层(编排层)指南**
人工智能·llm·aigc
雍凉明月夜8 分钟前
深度学习之常用归一化(Normalization)
人工智能·深度学习·计算机视觉
沃达德软件9 分钟前
视频标注技术全解析
人工智能·目标检测·计算机视觉·视觉检测·音视频·实时音视频·视频编解码
Buxxxxxx11 分钟前
DAY 44 简单CNN
人工智能·神经网络·cnn
GEO AI搜索优化助手13 分钟前
从传统SEO到生成式AI搜索优化的战略转型
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
颜颜yan_13 分钟前
从 0 到 1 搭建一个「塔罗感」AI 智能体 —— 微光运势实践记录
人工智能·ai·智能体·modelengine
灰灰勇闯IT15 分钟前
鸿蒙 ArkUI 声明式 UI 核心:状态管理(@State/@Prop/@Link)实战解析
人工智能·计算机视觉·harmonyos
cyyt16 分钟前
深度学习周报(12.22~12.28)
人工智能·算法·机器学习
质变科技AI就绪数据云16 分钟前
AI记忆架构三大路线
人工智能·ai·ai agent·智能体·记忆体