七、深度学习——RNN

一、RNN网络原理

  • 文本数据是具有序列特性的。为了表示出数据的序列关系,需要使用循环神经网络(Recurrent Nearal Networks,RNN)来对数据进行建模,RNN是一个作用于处理带有序列特点的样本数据

1.RNN的计算过程

  • h表示隐藏状态,每一次的输入都会包含两个值:上一个时间步的隐藏状态,当前状态的输入值,输出当前时间步的隐藏状态和当前时间步的预测结果

实际上,字是重复输入到同一个神经元中的

2.神经元内部的计算过程

ht=tanh(Wihxt+bih+Whhht−1+bhh)h_t= tanh(W_{ih}x_t+b_{ih}+W_{hh}h_{t-1}+b_{hh})ht=tanh(Wihxt+bih+Whhht−1+bhh)

  • WihW_{ih}Wih表示输入数据的权重
  • bihb_{ih}bih表示输入数据的偏置
  • WhhW_{hh}Whh表示输入隐藏状态的权重
  • bhhb_{hh}bhh表示输入隐藏状态的偏置
  • 最后对输出结果使用tanh激活函数进行计算,得到该神经元的输出

3.API

python 复制代码
RNN = torch.nn.RNN(input_size, hidden_size, num_layer)
  • input_size:输入数据的维度,一般设为词向量的维度
  • hidden_size:隐藏层h的维数,也是当前层神经元的输出维度
  • num_layer:隐藏层h的层数,默认为1

将RNN实例化就可以将数据送入进行处理,处理方式如下:

python 复制代码
output, hn = RNN(x, h0)
  • 输入数据:输入主要包括词嵌入的x,初始的隐藏层h0

    • x的表示形式为[seq_len, batch, input_size],即[句子的长度,batch的大小,词向量的维度]
    • h0的表示形式为[num_layers, batch, hidden_size],即[隐藏层的层数, batch的大小,隐藏层h的维数](初始化设置为全0)
  • 输出结果:主要包括输出结果output,最后一层的hn

    • output的表示形式为[seq_len, batch, input_size],即[句子的长度,batch的大小,词向量的维度]
    • hn的表示形式为[num_layers, batch, hidden_size],即[隐藏层的层数, batch的大小,隐藏层h的维数]
相关推荐
虫无涯1 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet3 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算3 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心3 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar4 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai5 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI5 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear7 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp
小气小憩7 小时前
“暗战”百度搜索页:Monica悬浮球被“围剿”,一场AI Agent与传统巨头的流量攻防战
前端·人工智能
神经星星7 小时前
准确度提升400%!印度季风预测模型基于36个气象站点,实现城区尺度精细预报
人工智能