七、深度学习——RNN

一、RNN网络原理

  • 文本数据是具有序列特性的。为了表示出数据的序列关系,需要使用循环神经网络(Recurrent Nearal Networks,RNN)来对数据进行建模,RNN是一个作用于处理带有序列特点的样本数据

1.RNN的计算过程

  • h表示隐藏状态,每一次的输入都会包含两个值:上一个时间步的隐藏状态,当前状态的输入值,输出当前时间步的隐藏状态和当前时间步的预测结果

实际上,字是重复输入到同一个神经元中的

2.神经元内部的计算过程

ht=tanh(Wihxt+bih+Whhht−1+bhh)h_t= tanh(W_{ih}x_t+b_{ih}+W_{hh}h_{t-1}+b_{hh})ht=tanh(Wihxt+bih+Whhht−1+bhh)

  • WihW_{ih}Wih表示输入数据的权重
  • bihb_{ih}bih表示输入数据的偏置
  • WhhW_{hh}Whh表示输入隐藏状态的权重
  • bhhb_{hh}bhh表示输入隐藏状态的偏置
  • 最后对输出结果使用tanh激活函数进行计算,得到该神经元的输出

3.API

python 复制代码
RNN = torch.nn.RNN(input_size, hidden_size, num_layer)
  • input_size:输入数据的维度,一般设为词向量的维度
  • hidden_size:隐藏层h的维数,也是当前层神经元的输出维度
  • num_layer:隐藏层h的层数,默认为1

将RNN实例化就可以将数据送入进行处理,处理方式如下:

python 复制代码
output, hn = RNN(x, h0)
  • 输入数据:输入主要包括词嵌入的x,初始的隐藏层h0

    • x的表示形式为[seq_len, batch, input_size],即[句子的长度,batch的大小,词向量的维度]
    • h0的表示形式为[num_layers, batch, hidden_size],即[隐藏层的层数, batch的大小,隐藏层h的维数](初始化设置为全0)
  • 输出结果:主要包括输出结果output,最后一层的hn

    • output的表示形式为[seq_len, batch, input_size],即[句子的长度,batch的大小,词向量的维度]
    • hn的表示形式为[num_layers, batch, hidden_size],即[隐藏层的层数, batch的大小,隐藏层h的维数]
相关推荐
AI科技星几秒前
统一场论框架下万有引力常数的量子几何涌现与光速关联
数据结构·人工智能·算法·机器学习·重构
Coder个人博客7 分钟前
Apollo Canbus 底盘通信模块接口调用流程图与源码分析
人工智能·自动驾驶·apollo
孟祥_成都7 分钟前
前端和小白都能看懂的 LangChain Model 模块核心实战指南
前端·人工智能
玄微云11 分钟前
玄微科技:大健康数智化的 4 个 AI 智能体落地要点
大数据·人工智能·科技·软件需求·门店管理
蓝鲨硬科技11 分钟前
黄仁勋“梭哈”的物理AI,正在被中国企业变成现实
人工智能·chatgpt
Coder个人博客11 分钟前
Apollo Prediction 预测模块接口调用流程图与源码分析
人工智能·自动驾驶·apollo
热爱专研AI的学妹13 分钟前
【搭建工作流教程】使用数眼智能 API 搭建 AI 智能体工作流教程(含可视化流程图)
大数据·数据库·人工智能·python·ai·语言模型·流程图
LYFlied18 分钟前
Spec Coding:AI时代前端开发的范式革新
前端·人工智能·工程化·spec coding
2401_8414956420 分钟前
知识工程:人工智能从通用求解到知识驱动的演进基石
人工智能·自然语言处理·知识图谱·语义网络·状态空间·知识工程·自然语言理解
救救孩子把20 分钟前
中文命名实体识别(NER)数据集全面整理
人工智能·机器学习·数据集