七、深度学习——RNN

一、RNN网络原理

  • 文本数据是具有序列特性的。为了表示出数据的序列关系,需要使用循环神经网络(Recurrent Nearal Networks,RNN)来对数据进行建模,RNN是一个作用于处理带有序列特点的样本数据

1.RNN的计算过程

  • h表示隐藏状态,每一次的输入都会包含两个值:上一个时间步的隐藏状态,当前状态的输入值,输出当前时间步的隐藏状态和当前时间步的预测结果

实际上,字是重复输入到同一个神经元中的

2.神经元内部的计算过程

ht=tanh(Wihxt+bih+Whhht−1+bhh)h_t= tanh(W_{ih}x_t+b_{ih}+W_{hh}h_{t-1}+b_{hh})ht=tanh(Wihxt+bih+Whhht−1+bhh)

  • WihW_{ih}Wih表示输入数据的权重
  • bihb_{ih}bih表示输入数据的偏置
  • WhhW_{hh}Whh表示输入隐藏状态的权重
  • bhhb_{hh}bhh表示输入隐藏状态的偏置
  • 最后对输出结果使用tanh激活函数进行计算,得到该神经元的输出

3.API

python 复制代码
RNN = torch.nn.RNN(input_size, hidden_size, num_layer)
  • input_size:输入数据的维度,一般设为词向量的维度
  • hidden_size:隐藏层h的维数,也是当前层神经元的输出维度
  • num_layer:隐藏层h的层数,默认为1

将RNN实例化就可以将数据送入进行处理,处理方式如下:

python 复制代码
output, hn = RNN(x, h0)
  • 输入数据:输入主要包括词嵌入的x,初始的隐藏层h0

    • x的表示形式为[seq_len, batch, input_size],即[句子的长度,batch的大小,词向量的维度]
    • h0的表示形式为[num_layers, batch, hidden_size],即[隐藏层的层数, batch的大小,隐藏层h的维数](初始化设置为全0)
  • 输出结果:主要包括输出结果output,最后一层的hn

    • output的表示形式为[seq_len, batch, input_size],即[句子的长度,batch的大小,词向量的维度]
    • hn的表示形式为[num_layers, batch, hidden_size],即[隐藏层的层数, batch的大小,隐藏层h的维数]
相关推荐
Coder_Boy_1 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱3 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º5 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º7 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144878 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能