slam中的eskf观测矩阵推导

在之前的《slam中的eskf推导》一文中,没有写观测矩阵 H 矩阵的过程,现在补上这部分。

前置

列举几个等下推导需要用到的一些点:

平面特征点构造观测矩阵

例如在 fastlio 中,是利用平面特征点到拟合平面的距离来构造观测方程,利用平面特征点到拟合平面的距离应该趋向于0来列方程。假设拟合后的法向量为 u = [A, B, C]',截距为 D,点到平面的距离为 d = Ax + By + Cz + D

以距离来列观测方程:

对于 q 点的解释

对于平面方程,可以写作:

u'(x - q) = 0

u 是单位法向量,q 是平面上的任意已知点,点到平面的距离可以写作:

d = u'(x - q)

如果 x 也在平面上,则 d = 0

q 的选取不影响距离值的计算,因为:

u'(x - q1) = u'(x - q2)

推导观测方程

添加姿态偏差 δR,平移偏差 δt,以及噪声 V:

变换式子,可以得到:

等式两边对 δx 求偏导,得:

之后对 δx 中的角度 δθ 和 位移 δt 分别求偏导,得到:

对 δt 求偏导就比较简单了:

那么对于点 Pi 以及整体的观测矩阵 H:

相关推荐
点云SLAM2 天前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
点云SLAM3 天前
凸优化(Convex Optimization) 理论(2)
机器人·slam·最小二乘法·数值优化·凸优化·拉格朗日-牛顿法·二次规划(qp)
WWZZ20254 天前
SLAM进阶——数据集
人工智能·计算机视觉·机器人·大模型·slam·具身智能
WWZZ20255 天前
SLAM进阶——特征提取
人工智能·大模型·slam·orb·具身智能·特征提取
Sereinc.Y8 天前
【移动机器人运动规划(ROS)】03_ROS话题-服务-动作
c++·动态规划·ros·slam
点云SLAM9 天前
Truncated Least Squares(TLS 截断最小二乘)算法原理
算法·slam·位姿估计·数值优化·点云配准·非凸全局优化·截断最小二乘法
点云SLAM10 天前
点云配准算法之- GICP算法点云配准概率模型推导和最大似然求解(MLE)
算法·机器人·slam·点云配准·最大似然估计·点云数据处理·gicp算法
WWZZ202512 天前
快速上手大模型:实践(Grounded-SAM2与Depth Anything V2)
大模型·sam·slam·多模态·具身智能·dino·grounded-sam2
点云SLAM13 天前
SLAM文献之-Embedding Manifold Structures into Kalman Filters(3)
计算机视觉·机器人·slam·fast-lio·卡尔曼滤波算法·导航系统·imu系统导航
某林21214 天前
基于SLAM Toolbox的移动机器人激光建图算法原理与工程实现
stm32·嵌入式硬件·算法·slam