slam中的eskf观测矩阵推导

在之前的《slam中的eskf推导》一文中,没有写观测矩阵 H 矩阵的过程,现在补上这部分。

前置

列举几个等下推导需要用到的一些点:

平面特征点构造观测矩阵

例如在 fastlio 中,是利用平面特征点到拟合平面的距离来构造观测方程,利用平面特征点到拟合平面的距离应该趋向于0来列方程。假设拟合后的法向量为 u = [A, B, C]',截距为 D,点到平面的距离为 d = Ax + By + Cz + D

以距离来列观测方程:

对于 q 点的解释

对于平面方程,可以写作:

u'(x - q) = 0

u 是单位法向量,q 是平面上的任意已知点,点到平面的距离可以写作:

d = u'(x - q)

如果 x 也在平面上,则 d = 0

q 的选取不影响距离值的计算,因为:

u'(x - q1) = u'(x - q2)

推导观测方程

添加姿态偏差 δR,平移偏差 δt,以及噪声 V:

变换式子,可以得到:

等式两边对 δx 求偏导,得:

之后对 δx 中的角度 δθ 和 位移 δt 分别求偏导,得到:

对 δt 求偏导就比较简单了:

那么对于点 Pi 以及整体的观测矩阵 H:

相关推荐
点云SLAM6 天前
点云数据分割算法之-聚合层次聚类(AHC)平面识别
聚类·slam·点云数据处理·点云分割·平面识别·聚合层次聚类·有序点云数据
点云SLAM7 天前
MAP(最大后验)估计理论(2)以及相关应用
机器人·slam·卡尔曼滤波算法·map估计理论·lm算法·非线性最小二乘问题线性化
点云SLAM13 天前
SLAM文献之-A Quick Guide for the Iterated Extended Kalman Filter on Manifolds
人工智能·机器人·slam·三维重建·fast-lio·卡尔曼滤波算法·iekf
提伯斯64614 天前
解决 PX4 + ROS px4ctrl 「No odom!」自动起飞失败问题
linux·ros·px4·fastlio·mid360·egoplanner
大鹅同志14 天前
Ubuntu 20.04使用MB-System分析与可视化EM3000数据
数据库·3d·ros·slam·mb-system
点云SLAM15 天前
C++ 静态初始化顺序问题(SIOF)和SLAM / ROS 工程实战问题
开发语言·c++·slam·静态初始化顺序问题·工程实战技术·c++static 关键字
雨幕丶20 天前
激光SLAM 回环检测---STD(A Stable Triangle Descriptor for 3D place recognition)
slam
点云SLAM22 天前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
点云SLAM23 天前
凸优化(Convex Optimization) 理论(2)
机器人·slam·最小二乘法·数值优化·凸优化·拉格朗日-牛顿法·二次规划(qp)
WWZZ202524 天前
SLAM进阶——数据集
人工智能·计算机视觉·机器人·大模型·slam·具身智能