DataWhale AI夏令营 Task2.2笔记

本次代码改进主要集中在聚类算法和主题词提取方法的优化上,主要包含三个关键修改:

首先,将聚类算法从KMeans替换为DBSCAN。这是因为原KMeans方法需要预先指定聚类数量,而实际评论数据中的主题分布难以预测。DBSCAN算法能够自动确定聚类数量,并有效识别噪声点(这是指南中明确指出的难点)。该算法的优势在于能更好地处理非球形聚类结构,对噪声数据具有更强的鲁棒性,特别适合文本数据中常见的非均匀分布特征,从而提升聚类质量。

其次,实现了DBSCAN参数的动态确定。通过NearestNeighbors方法寻找最佳eps值(采用肘点法原理),避免了繁琐的手动调参过程,使算法能自适应不同数据集的特征分布。虽然代码中相关可视化部分(plt)被注释,但在调试阶段可取消注释以直观观察距离分布的肘点位置,便于参数优化。

最后,改进了主题词提取方法并优化了噪声处理。主题词提取从原先基于聚类中心特征权重的方法,改为直接统计聚类内的词语频率。新方法能更直观地反映实际用词情况,避免TF-IDF特征权重可能带来的偏差,同时使用管道符"|"分隔主题词,更符合业务需求。对于DBSCAN标记的噪声点(label=-1),不再分配主题词,有效避免低质量数据污染聚类结果,显著提高主题词的代表性和纯净度。

相关推荐
牛客企业服务4 分钟前
AI面试选型策略:9大维度避坑指南
人工智能·面试·职场和发展
Yeats_Liao9 分钟前
MindSpore开发之路(四):核心数据结构Tensor
数据结构·人工智能·机器学习
咨询qq 87622396516 分钟前
三菱PLC与MCGS组态3x4书架式堆垛式立体库
机器学习
许泽宇的技术分享33 分钟前
解密Anthropic的MCP Inspector:从协议调试到AI应用开发的全栈架构之旅
人工智能·架构·typescript·mcp·ai开发工具
nopSled37 分钟前
AlphaAvatar:一个基于 LiveKit 的插件化实时 Omni-Avatar 架构
人工智能·语言模型
lovingsoft37 分钟前
如何看自己笔记本是不是ARM64
人工智能·测试管理
美狐美颜sdk1 小时前
AI加持下的直播美颜sdk:动态贴纸功能的未来形态前瞻
人工智能·美颜sdk·直播美颜sdk·第三方美颜sdk·人脸美型sdk
火山引擎开发者社区1 小时前
Force 开发者日:火山引擎 Agent 开发者生态全面升级
人工智能·火山引擎
智算菩萨1 小时前
从对话系统到对话式智能体:对话式AI发展综述与2025年前沿整合
人工智能
yiersansiwu123d1 小时前
AI时代的就业变革:在替代与创造中寻找平衡之道
人工智能