DataWhale AI夏令营 Task2.2笔记

本次代码改进主要集中在聚类算法和主题词提取方法的优化上,主要包含三个关键修改:

首先,将聚类算法从KMeans替换为DBSCAN。这是因为原KMeans方法需要预先指定聚类数量,而实际评论数据中的主题分布难以预测。DBSCAN算法能够自动确定聚类数量,并有效识别噪声点(这是指南中明确指出的难点)。该算法的优势在于能更好地处理非球形聚类结构,对噪声数据具有更强的鲁棒性,特别适合文本数据中常见的非均匀分布特征,从而提升聚类质量。

其次,实现了DBSCAN参数的动态确定。通过NearestNeighbors方法寻找最佳eps值(采用肘点法原理),避免了繁琐的手动调参过程,使算法能自适应不同数据集的特征分布。虽然代码中相关可视化部分(plt)被注释,但在调试阶段可取消注释以直观观察距离分布的肘点位置,便于参数优化。

最后,改进了主题词提取方法并优化了噪声处理。主题词提取从原先基于聚类中心特征权重的方法,改为直接统计聚类内的词语频率。新方法能更直观地反映实际用词情况,避免TF-IDF特征权重可能带来的偏差,同时使用管道符"|"分隔主题词,更符合业务需求。对于DBSCAN标记的噪声点(label=-1),不再分配主题词,有效避免低质量数据污染聚类结果,显著提高主题词的代表性和纯净度。

相关推荐
动能小子ohhh8 分钟前
AI智能体(Agent)大模型入门【6】--编写fasteAPI后端请求接口实现页面聊天
人工智能·python·深度学习·ai编程
SCBAiotAigc20 分钟前
huggingface里的数据集如何下载呢?
人工智能·python
我是Feri1 小时前
机器学习之线性回归的特征相关性:避免“双胞胎特征“干扰模型
人工智能·机器学习
SaN-V1 小时前
针对 OpenMMLab 视频理解(分类)的 MMAction2 的环境配置
人工智能·openmmlab·mmcv·视频理解·mmaction2
拉姆哥的小屋1 小时前
深度学习图像分类实战:从零构建ResNet50多类别分类系统
人工智能·深度学习·分类
盼小辉丶1 小时前
TensorFlow深度学习实战(39)——机器学习实践指南
深度学习·机器学习·tensorflow
深瞳智检1 小时前
YOLO算法原理详解系列 第007期-YOLOv7 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
能工智人小辰1 小时前
Coordinate Attention for Efficient Mobile Network Design 学习笔记
笔记·学习·php
神奇的代码在哪里1 小时前
基于【讯飞星火 Spark Lite】轻量级大语言模型的【PySide6应用】开发与实践
人工智能·大语言模型·pyside6·讯飞星火spark·spark lite
蒋星熠1 小时前
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
人工智能·pytorch·爬虫·python·深度学习·机器学习·计算机视觉