DataWhale AI夏令营 Task2.2笔记

本次代码改进主要集中在聚类算法和主题词提取方法的优化上,主要包含三个关键修改:

首先,将聚类算法从KMeans替换为DBSCAN。这是因为原KMeans方法需要预先指定聚类数量,而实际评论数据中的主题分布难以预测。DBSCAN算法能够自动确定聚类数量,并有效识别噪声点(这是指南中明确指出的难点)。该算法的优势在于能更好地处理非球形聚类结构,对噪声数据具有更强的鲁棒性,特别适合文本数据中常见的非均匀分布特征,从而提升聚类质量。

其次,实现了DBSCAN参数的动态确定。通过NearestNeighbors方法寻找最佳eps值(采用肘点法原理),避免了繁琐的手动调参过程,使算法能自适应不同数据集的特征分布。虽然代码中相关可视化部分(plt)被注释,但在调试阶段可取消注释以直观观察距离分布的肘点位置,便于参数优化。

最后,改进了主题词提取方法并优化了噪声处理。主题词提取从原先基于聚类中心特征权重的方法,改为直接统计聚类内的词语频率。新方法能更直观地反映实际用词情况,避免TF-IDF特征权重可能带来的偏差,同时使用管道符"|"分隔主题词,更符合业务需求。对于DBSCAN标记的噪声点(label=-1),不再分配主题词,有效避免低质量数据污染聚类结果,显著提高主题词的代表性和纯净度。

相关推荐
小鸡吃米…2 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫3 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)3 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
saoys3 小时前
Opencv 学习笔记:图像掩膜操作(精准提取指定区域像素)
笔记·opencv·学习
minhuan3 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维3 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS3 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd3 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟4 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
电子小白1234 小时前
第13期PCB layout工程师初级培训-1-EDA软件的通用设置
笔记·嵌入式硬件·学习·pcb·layout