OpenCV直线段检测算法类cv::line_descriptor::LSDDetector

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

该类用于实现 LSD (Line Segment Detector) 直线段检测算法。LSD 是一种快速、准确的直线检测方法,能够在不依赖边缘检测的前提下直接从图像中提取出直线段。

它是 OpenCV 的 line_descriptor 模块的一部分,常用于计算机视觉任务如图像拼接、SLAM、特征匹配等。

主要功能:

  • 从灰度图像中检测直线段;
  • 支持多尺度和多金字塔层处理;
  • 输出结构化信息:线段起点、终点、长度、响应值等;
  • 可与 BinaryDescriptor 配合使用,进行线段描述符提取和匹配;

公共成员函数

  1. 创建 LSDDetector 实例
cpp 复制代码
Ptr<LSDDetector> lsd = LSDDetector::createLSDDetector();

说明:

  • 静态工厂方法,用于创建一个默认配置的 LSD 检测器;
  • 返回智能指针 Ptr。
  1. detect() 方法:检测线段
cpp 复制代码
void detect( const Mat& image, CV_OUT std::vector<KeyLine>& keylines,
             int scale, int numOctaves, const Mat& mask = Mat() );

参数说明:

参数 类型 含义
image const Mat& 输入图像(通常为单通道灰度图)
keylines std::vector& 输出的线段列表
scale int 图像缩放比例(尺度空间参数)
numOctaves int 构建的金字塔层数(尺度空间层级数)
mask const Mat&(可选) 感兴趣区域掩码

代码示例

cpp 复制代码
#include <opencv2/line_descriptor.hpp>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace cv::line_descriptor;

int main()
{
    // 加载图像
    Mat image = imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", IMREAD_GRAYSCALE );
    if ( image.empty() )
    {
        std::cerr << "无法加载图像!" << std::endl;
        return -1;
    }

    // 创建 LSDDetector
    Ptr< LSDDetector > lsd = LSDDetector::createLSDDetector();

    // 存储线段
    std::vector< KeyLine > keylines;

    // 设置参数
    int scale       = 2;  // 尺度
    int num_octaves = 1;  // 金字塔层数

    // 检测线段
    lsd->detect( image, keylines, scale, num_octaves );

    std::cout << "检测到线段数量: " << keylines.size() << std::endl;

    // 可视化线段
    Mat colorImage;
    cvtColor( image, colorImage, COLOR_GRAY2BGR );

    for ( const auto& kl : keylines )
    {
        Point pt1( kl.startPointX, kl.startPointY );
        Point pt2( kl.endPointX, kl.endPointY );
        line( colorImage, pt1, pt2, Scalar( 0, 0, 255 ), 1 );  // 红色线段
    }

    imshow( "Detected Lines", colorImage );
    waitKey( 0 );

    return 0;
}

运行结果

相关推荐
初级炼丹师(爱说实话版)8 分钟前
多进程与多线程的优缺点及适用场景总结
算法
陈橘又青15 分钟前
100% AI 写的开源项目三周多已获得 800 star 了
人工智能·后端·ai·restful·数据
hetao173383720 分钟前
2025-11-25~26 hetao1733837的刷题记录
c++·算法
中杯可乐多加冰33 分钟前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
历程里程碑37 分钟前
各种排序法大全
c语言·数据结构·笔记·算法·排序算法
少许极端1 小时前
算法奇妙屋(十四)-简单多状态dp问题
算法·动态规划·图解算法·简单多状态dp·打家劫舍问题·买卖股票问题全解
IT_陈寒1 小时前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
龙智DevSecOps解决方案1 小时前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!1 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
星空的资源小屋1 小时前
VNote:程序员必备Markdown笔记神器
javascript·人工智能·笔记·django