题解:CF1829H Don‘t Blame Me

一:思路:

在本题,我们可以先设dpi,j为选到第 i 个数时,按位与结果为 j 的方案数

接下来分两种情况分类讨论:

**- 如果不选:加上选到第 i−1 个数的方案数,也就是dpi,j = dpi,j + dpi-1,j

  • 如果选:与上第 i 个数,也就是:dp i,j & a i = dp i,j & ai + dp i-1,j**
  1. 由于题目给出的 k 表示二进制位有 k 个 1,那我们就要在 0-63 中找到所有二进制位中有 k 个 1 的数,并将方案数累加。

  2. 这里的方法找是二进制中有多少个 1,不停的与比当前数少 1 的数进行按位与,这样当目前的数变成 0 时,二进制位 1 的个数也就统计出来了。

代码:

cpp 复制代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2e5+10,mod=1e9+7;
ll t,n,m,a[N];
ll dp[N][80];
ll ldnsbshljbl(ll x){
    ll cnt=0;
    while(x!=0){
        cnt++;
        x&=x-1;
    }
    return cnt;
    }
    int main(){
    scanf("%lld",&t);
    while(t--){
        scanf("%lld%lld",&n,&m);
        for(int i=1;i<=n;i++){
            scanf("%lld",&a[i]);
            for(int j=0;j<64;j++){
                dp[i][j]=0;
            }
            dp[i][a[i]]=1;
        }
        for(int i=1;i<=n;i++){
            for(int j=0;j<64;j++){
                dp[i][j]=(dp[i][j]+dp[i-1][j])%mod;
                dp[i][j&a[i]]=(dp[i][j&a[i]]+dp[i-1][j])%mod;
            }
        }
        ll ans=0;
        for(int i=0;i<64;i++){
            if(ldnsbshljbl(i)==m){
                ans=(ans+dp[n][i])%mod;
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}
相关推荐
颜酱15 分钟前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_7369191027 分钟前
C++代码风格检查工具
开发语言·c++·算法
yugi98783829 分钟前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
DuHz1 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女1 小时前
TRSV优化2
算法
代码游侠2 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_763472462 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
abluckyboy3 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
园小异3 小时前
2026年技术面试完全指南:从算法到系统设计的实战突破
算法·面试·职场和发展
m0_706653233 小时前
分布式系统安全通信
开发语言·c++·算法