题解:CF1829H Don‘t Blame Me

一:思路:

在本题,我们可以先设dpi,j为选到第 i 个数时,按位与结果为 j 的方案数

接下来分两种情况分类讨论:

**- 如果不选:加上选到第 i−1 个数的方案数,也就是dpi,j = dpi,j + dpi-1,j

  • 如果选:与上第 i 个数,也就是:dp i,j & a i = dp i,j & ai + dp i-1,j**
  1. 由于题目给出的 k 表示二进制位有 k 个 1,那我们就要在 0-63 中找到所有二进制位中有 k 个 1 的数,并将方案数累加。

  2. 这里的方法找是二进制中有多少个 1,不停的与比当前数少 1 的数进行按位与,这样当目前的数变成 0 时,二进制位 1 的个数也就统计出来了。

代码:

cpp 复制代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2e5+10,mod=1e9+7;
ll t,n,m,a[N];
ll dp[N][80];
ll ldnsbshljbl(ll x){
    ll cnt=0;
    while(x!=0){
        cnt++;
        x&=x-1;
    }
    return cnt;
    }
    int main(){
    scanf("%lld",&t);
    while(t--){
        scanf("%lld%lld",&n,&m);
        for(int i=1;i<=n;i++){
            scanf("%lld",&a[i]);
            for(int j=0;j<64;j++){
                dp[i][j]=0;
            }
            dp[i][a[i]]=1;
        }
        for(int i=1;i<=n;i++){
            for(int j=0;j<64;j++){
                dp[i][j]=(dp[i][j]+dp[i-1][j])%mod;
                dp[i][j&a[i]]=(dp[i][j&a[i]]+dp[i-1][j])%mod;
            }
        }
        ll ans=0;
        for(int i=0;i<64;i++){
            if(ldnsbshljbl(i)==m){
                ans=(ans+dp[n][i])%mod;
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}
相关推荐
逻辑留白陈10 小时前
Adaboost进阶:与主流集成算法对比+工业级案例+未来方向
算法
Learn Beyond Limits10 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
天选之女wow11 小时前
【代码随想录算法训练营——Day28】贪心算法——134.加油站、135.分发糖果、860.柠檬水找零、406.根据身高重建队列
算法·leetcode·贪心算法
Gohldg11 小时前
C++算法·贪心例题讲解
c++·数学·算法·贪心算法
远远远远子11 小时前
类与对象 --1
开发语言·c++·算法
Aaplloo11 小时前
【无标题】
人工智能·算法·机器学习
西望云天11 小时前
The 2024 ICPC Asia Nanjing Regional Contest(2024南京区域赛EJKBG)
数据结构·算法·icpc
10岁的博客12 小时前
容器化安装新玩法
算法
不会算法的小灰12 小时前
HTML简单入门—— 基础标签与路径解析
前端·算法·html
flashlight_hi13 小时前
LeetCode 分类刷题:1901. 寻找峰值 II
python·算法·leetcode