如何解决Flink CDC同步时间类型字段8小时时间差的问题,以MySQL为例

在使用Flink CDC进行数据同步时,默认情况下经常会遇到时间类型的字段与实际值相差8个小时的问题。本文以MySQL为例提供解决方案,其他数据源也可以参考这类实现。

原文链接:

https://mp.weixin.qq.com/s/_f41ES8UquM-kj3Ie8JU_g

1. 设置server时区

比如MySQL服务的时区为UTC时间,可以参考以下code设置时区。

复制代码
MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
.hostname(${hostName})
.port(${port})
.databaseList(${dbList})
.tableList(${tableList})
.username(${userName})
.password(${dbPwd}) 
.scanNewlyAddedTableEnabled(${true})
.serverTimeZone("UTC")
.serverId(${serverID})
.startupOptions(${startupOptions})
.includeSchemaChanges(${includeSchemaChanges})
.debeziumProperties(${debeziumProperties})
.deserializer(new JsonDebeziumDeserializationSchema(false, decimalConfigs)).build();

2. 指定Debezium Time Converter

Flink CDC/Debezium官方有一个Time Converter自定义实现

MysqlDebeziumTimeConverter,可以在配置Debezium properties时进行指定来解决时间字段时间差的问题。

参考如下code进行配置:

复制代码
String dateFormat = "yyyy-MM-dd";
String timeFormat = "HH:mm:ss";
String datetimeFormat = "yyyy-MM-dd HH:mm:ss";
String timestampFormat = "yyyy-MM-dd HH:mm:ss";
Properties debeziumProperties = new Properties();
debeziumProperties.setProperty(converters,"mysqlTimeConverters");
debeziumProperties.setProperty("mysqlTimeConverters.type","io.debezium.connector.mysql.converters.MysqlDebeziumTimeConverter");
debeziumProperties.setProperty("mysqlTimeConverters.format.timezone",timezone);
debeziumProperties.setProperty("mysqlTimeConverters.format.date",dateFormat);
debeziumProperties.setProperty("mysqlTimeConverters.format.time",timeFormat);
debeziumProperties.setProperty("mysqlTimeConverters.format.datetime",datetimeFormat);
debeziumProperties.setProperty("mysqlTimeConverters.format.timestamp",timestampFormat);

io.debezium.connector.mysql.converters.MysqlDebeziumTimeConverter源码实现片段。

如果我们需要自定义一个Converter,可以通过继承CustomConverter实现对应的方法即可,然后通过参考MysqlDebeziumTimeConverter的实现可以解决很多数据源比如SQL Server,PG等时间字段数据出现时间差的问题。

原文链接:

https://mp.weixin.qq.com/s/_f41ES8UquM-kj3Ie8JU_g

相关推荐
8K超高清1 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
amhjdx1 小时前
政策东风下:卓玛儿童级健康腻子引领行业升级
大数据
TDengine (老段)2 小时前
TDengine 字符串函数 CONCAT_WS 用户手册
android·大数据·数据库·时序数据库·tdengine·涛思数据
TTGGGFF2 小时前
人工智能:大语言模型或为死胡同?拆解AI发展的底层逻辑、争议与未来方向
大数据·人工智能·语言模型
杂家4 小时前
Hadoop完全分布式部署(超详细)
大数据·hadoop·分布式
BD_Marathon4 小时前
【Hadoop】hadoop3.3.1完全分布式配置
大数据·hadoop·分布式
Ashlee_code5 小时前
BSS供应商:电信与金融领域的幕后支撑者
大数据·网络·金融·系统架构·跨境·金融机构·场外期权
Acrelhuang7 小时前
覆盖全场景需求:Acrel-1000 变电站综合自动化系统的技术亮点与应用
大数据·网络·人工智能·笔记·物联网
忙碌5448 小时前
智能应用开发指南:深度学习、大数据与微服务的融合之道
大数据·深度学习·微服务
萤丰信息8 小时前
智慧园区系统:开启园区管理与运营的新时代
java·大数据·人工智能·安全·智慧城市·智慧园区